Everything Maths Grade 10

(Marvins-Underground-K-12) #1
Exercise 1 – 8:

Factorise the following:


  1. x^2 + 8x+ 15 2. x^2 + 9x+ 8 3. x^2 + 12x+ 36

  2. 2 h^2 + 5h 3 5. 3 x^2 + 4x+ 1 6. 3 s^2 +s 10

  3. x^2 2 x 15 8. x^2 + 2x 3 9.x^2 +x 20

  4. x^2 x 20 11. 2 x^2 22 x+ 20 12. 6 a^2 + 14a+ 8

  5. 6 v^2 27 v+ 27 14. 6 g^2 15 g 9 15. 3 x^2 + 19x+ 6

  6. 3 x^2 + 17x 6 17. 7 x^2 6 x 1 18. 6 x^2 15 x 9

  7. a^2 7 ab+ 12b 20. 3 a^2 + 5ab 12 b^2 21. 98 x^4 + 14x^2 4

  8. (x2)^2 7(x2) + 12 23.(a2)^2 4(a2) 5 24.(y+ 3)^2 3(y+ 3) 18

  9. 3(b^2 + 5b) + 12 26.6(a^2 + 3a) 168


For more exercises, visit http://www.everythingmaths.co.za and click on ’Practise Maths’.
1.2DKY 2.2DKZ 3.2DM2 4.2DM3 5.2DM4 6.2DM5
7.2DM6 8.2DM7 9.2DM8 10.2DM9 11.2DMB 12.2DMC
13.2DMD 14.2DMF 15.2DMG 16.2DMH 17.2DMJ 18.2DMK
19.2DMM 20.2DMN 21.2DMP 22.2DMQ 23.2DMR 24.2DMS
25.2DMT 26.2DMV

http://www.everythingmaths.co.za m.everythingmaths.co.za

Sum and difference of two cubes EMAP


We now look at two special results obtained from multiplying a binomial and a trinomial:


Sum of two cubes:


(x+y)

(


x^2 xy+y^2

)


=x

(


x^2 xy+y^2

)


+y

(


x^2 xy+y^2

)


=


[


x

(


x^2

)


+x(xy) +x

(


y^2

)]


+


[


y

(


x^2

)


+y(xy) +y

(


y^2

)]


=x^3 x^2 y+xy^2 +x^2 yxy^2 +y^3
=x^3 +y^3

Difference of two cubes:


(xy)

(


x^2 +xy+y^2

)


=x

(


x^2 +xy+y^2

)


y

(


x^2 +xy+y^2

)


=


[


x

(


x^2

)


+x(xy) +x

(


y^2

)]



[


y

(


x^2

)


+y(xy) +y

(


y^2

)]


=x^3 +x^2 y+xy^2 x^2 yxy^2 y^3
=x^3 y^3

So we have seen that:


x^3 +y^3 = (x+y)

(


x^2 xy+y^2

)


x^3 y^3 = (xy)

(


x^2 +xy+y^2

)


We use these two basic identities to factorise more complex examples.


Chapter 1. Algebraic expressions 27
Free download pdf