Step 2: Find the three terms in the second bracket
We can replacexandyin the factorised form of the expression for the difference of two cubes with 2 tand 5 p.
Doing so we get the second bracket:
(
8 t^3 + 125p^3
)
= (2t+ 5p)
[
(2t)^2 (2t) (5p) + (5p)^2
]
= (2t+ 5p)
(
4 t^2 10 tp+ 25p^2
)
Step 3: Expand the brackets to check that the expression has been correctly factorised
(2t+ 5p)
(
4 t^2 10 tp+ 25p^2
)
= 2t
(
4 t^2 10 tp+ 25p^2
)
+ 5p
(
4 t^2 10 tp+ 25p^2
)
= 8t^3 20 pt^2 + 50p^2 t+ 20pt^2 50 p^2 t+ 125p^3
= 8t^3 + 125p^3
Exercise 1 – 9:
Factorise:
1.w^3 8 2. g^3 + 64 3. h^3 + 1
4.x^3 + 8 5. 27 m^3 6. 2 x^3 2 y^3
- 3 k^3 + 81q^3 8. 64 t^3 1 9. 64 x^2 1
- 125 x^3 + 1 11. 25 x^3 + 1 12. z 125 z^4
- 8 m^6 +n^9 14. 216 n^3 k^3 15. 125 s^3 +d^3
- 8 k^3 +r^3 17. 8 j^3 k^3 l^3 b^3 18. 27 x^3 y^3 +w^3
- 128 m^3 + 2f^3 20.p^15
1
8
y^12 21.
27
t^3