19.Write the following irrational numbers to 3 decimal places and then write each one as a rational number
to get an approximation of the irrational number.
a) 3,141592654... b)1,618033989...
c) 1,41421356... d)2,71828182845904523536...
20.Determine between which two consecutive integers the following irrational numbers lie, without using
a calculator.
a)
p
5 b)
p
10 c)
p
20 d)
p
30 e)^3
p
5 f)^3
p
10
g)^3
p
20 h)^3
p
30 i)
p
90 j)
p
72 k)^3
p
58 l)^3
p
118
21.Estimate the following surds to the nearest 1 decimal place, without using a calculator.
a)
p
14 b)
p
110 c)
p
48 d)
p
57
22.Expand the following products:
a) (a+ 5)^2 b)(n+ 12)^2 c) (d 4)^2
d)(7w+ 2)(7w 2) e)(12q+ 1)(12q 1) f) ( x 2)(x+ 2)
g) (5k 4)(5k+ 4) h) (5f+ 4)(2f+ 2) i)(3n+ 6)(6n+ 5)
j) (2g+ 6)(g+ 6) k)(4y+ 1)(4y+ 8) l)(d 3)(7d+ 2)
m) (6z 4)(z 2) n) (5w 11)^2 o) (5s 1)^2
p)(3d 8)^2 q) 5 f^2 (3f+ 5) + 7f(3f^2 + 7) r) 8 d(4d^3 + 2) + 6d^2 (7d^2 + 4)
s) 5 x^2 ( 2 x+ 2 ) + 7 x( 7 x^2 + 7 )
23.Expand the following:
a) (y^4 + 3y^2 +y)(y+ 1)(y 2) b)(x+ 1)^2 (x 1)^2
c) (x^2 + 2x+ 1)(x^2 2 x+ 1) d)(4a 3 b)(16a^2 + 12ab+ 9b^2 )
e) 2(x+ 3y)(x^2 xy y^2 ) f)(3a 5 b)(3a+ 5b)(a^2 +ab b^2 )
g)
(
y
1
y
) (
y+
1
y
)
h)
(
a
3