Check:
3 ð2xþ 6 Þ¼ 30
3 ð 2 2 þ 6 Þ¼ 30
3 10 ¼ 30
30 ¼ 30
The procedure for solving equations in general is:
Step 1 Remove parentheses.
Step 2 Combine like terms on each side of the equation.
Step 3 Use the addition and/or subtraction principle to get the variables
on one side and the constant terms on the other side.
Step 4 Use the division principle to solve for x.
Step 5 Check the equation.
EXAMPLE
Solve 5(2x7)3x¼5xþ9.
SOLUTION
5 ð2x 7 Þ3x¼5xþ 9
10x 35 3x¼5xþ 9 Remove parentheses
7x 35 ¼5xþ 9 Combine like terms
7x 35 5x¼5x5xþ 9 Get variables on one side and the
2x 35 ¼ 9 constants on the other side
2x 35 þ 35 ¼ 9 þ 35
2x¼ 44
2 x
2
¼
44
2
Divide by 2
x¼ 22
Check:
5 ð2x 7 Þ3x¼5xþ 9
5 ð 2 22 7 Þ 3 22 ¼ 5 22 þ 9
5 ð 44 7 Þ 66 ¼ 110 þ 9
5 ð 37 Þ 66 ¼ 119
185 66 ¼ 119
119 ¼ 119
142 CHAPTER 7 Expression and Equations