Chapter 5 e X P O N e N T S a N D r O O T S 125
DeMYSTiFieD / algebra DeMYSTiFieD / HuttenMuller / 000-0 / Chapter 5
4.^35
5
35
5
x 12 35 5 12
x
x
x
− xx
−
= −
−
=−− −
()
()()
5.^1
10
1
10
3 4 43 10 43
()()
()
x x
==x−
- 22 xx^23 ()−=yx^23 ()xy−^2
7.^38
12 5
38
12 5
7 x^3373812537
x
x
x
+ xx
+
= +
+
=+ + −
()()
()()
- x
y
x
y
x
y
− 533 = − 5 = − (^3) =−xy 3 −
12
52
()() 12 52
9.^16
31
16
31
16
31
16
3
4
4 3
4
314
14
x 314
x
x
x
x
x
x
+
=
+
=
+
()=
()
()( 331 x+)−^14
- ()
()
()
()
()
()
x (
x
x
x
x
x
− x
+
= −
+
= −
+
(^1) =−
1
1
1
1
1
4
(^53)
5 4
5 3
45
35 111
)(^45 x+)−^35
Simplifying Multiple Roots
The exponent-root properties are useful for simplifying multiple roots. With
the properties naam==mn/ and()aamn mn we can gradually rewrite the multiple
root as a single root. We rewrite each root as a power, one root at a time, and
then we multiply all of the exponents. This gives us an expression containing a
single exponent. Once we have the expression written with a single exponent,
we rewrite it as a root.
EXAMPLES
Write the expression as a single root.
45 x
We begin with^5 x.
(^45) xx==^415 //()xx^1514 /(==^15 /)(/^14 )/xx^120 =^20
(^63) yy^5 == 6 53 //()yy^5316 /(==^53 /)(/^16 )/y^518
EXAMPLES
Write the expression as a single root.
EXAMPLES
Write the expression as a single root.