136 algebra De mystif ieD
EXAMPLES
Use the distributive property to rewrite the expression.
−(3 + x) = −3 − x −(−2 + y) = 2 − y
−(2 + x − 3y) = −2 − x + 3y −(−4x − 7y − 2) = 4x + 7y + 2
−(y − x^2 ) = −y + x^2 −(−9 − y) = 9 + y
−(x^2 − x − 2) = −x^2 + x + 2
PRACTICE
Use the distributive property to rewrite the expression.
- −(4 + x) =
- −(−x − y) =
- −(2x^2 − 5) =
- −(−18 + xy^2 ) =
- −(2x − 16y + 5) =
- −(x^2 − 5x − 6) =
✔SOLUTIONS
- −(4 + x) = −4 − x
- −(−x − y) = x + y
- −(2x^2 − 5) = −2x^2 + 5
- −(−18 + xy^2 ) = 18 − xy^2
- −(2x − 16y + 5) = −2x + 16y − 5
- −(x^2 − 5x − 6) = −x^2 + 5x + 6
Distributing negative quantities has the same effect on signs as distributing
a minus sign: every sign in the parentheses changes.
EXAMPLES
Use the distributive property to rewrite the expression.
−8(4 + 5x) = −32 − 40x
−xy(1 – x) = −xy + x^2 y
−3x^2 (−2y + 9x) = 6x^2 y – 27x^3
−100(−4 – x) = 400 + 100x
EXAMPLES
Use the distributive property to rewrite the expression.
PRACTICE
Use the distributive property to rewrite the expression.
- −(4 +
PRACTICE
Use the distributive property to rewrite the expression.
EXAMPLES
Use the distributive property to rewrite the expression.