Algebra Demystified 2nd Ed

(Marvins-Underground-K-12) #1

136 algebra De mystif ieD


EXAMPLES
Use the distributive property to rewrite the expression.

−(3 + x) = −3 − x −(−2 + y) = 2 − y
−(2 + x − 3y) = −2 − x + 3y −(−4x − 7y − 2) = 4x + 7y + 2
−(y − x^2 ) = −y + x^2 −(−9 − y) = 9 + y
−(x^2 − x − 2) = −x^2 + x + 2

PRACTICE
Use the distributive property to rewrite the expression.


  1. −(4 + x) =

  2. −(−x − y) =

  3. −(2x^2 − 5) =

  4. −(−18 + xy^2 ) =

  5. −(2x − 16y + 5) =

  6. −(x^2 − 5x − 6) =


✔SOLUTIONS



  1. −(4 + x) = −4 − x

  2. −(−x − y) = x + y

  3. −(2x^2 − 5) = −2x^2 + 5

  4. −(−18 + xy^2 ) = 18 − xy^2

  5. −(2x − 16y + 5) = −2x + 16y − 5

  6. −(x^2 − 5x − 6) = −x^2 + 5x + 6


Distributing negative quantities has the same effect on signs as distributing
a minus sign: every sign in the parentheses changes.

EXAMPLES
Use the distributive property to rewrite the expression.
−8(4 + 5x) = −32 − 40x
−xy(1 – x) = −xy + x^2 y
−3x^2 (−2y + 9x) = 6x^2 y – 27x^3
−100(−4 – x) = 400 + 100x

EXAMPLES
Use the distributive property to rewrite the expression.

PRACTICE
Use the distributive property to rewrite the expression.


  1. −(4 +


PRACTICE
Use the distributive property to rewrite the expression.

EXAMPLES
Use the distributive property to rewrite the expression.
Free download pdf