Chapter 6 FaCtoring and the distributive ProPerty 139
- 14x + 8 − (2x − 4) = 14x + 8 − 2x + 4 = 14x − 2x + 8 + 4
= (14 − 2)x + 12 = 12x + 12 - 16x−^4 + 3x−2 − 4x + 9x−4 − x−2 + 5x − 6
= 16x−4 + 9x−4 + 3x−2 − x−2 − 4x + 5x − 6
= (16 + 9)x−4 + (3 − 1)x−2 + (−4 + 5)x − 6
= 25x−4 + 2x−2 + x − 6 - 5713 74
571
xy xy xy xy
xy xy
+ + – – +
+ + –
()
= +
+ + +
–
374
537714
53
xy xy
xy xy xy xy
( )
−
=− −
= xxy xy
xy xy
( )
+ –
+ –
77 3
2143
+
=
- x^2 y + xy^2 + 6x + 4 − (4x^2 y + 3xy^2 − 2x + 5)
= x^2 y + xy^2 + 6x + 4 − 4x^2 y − 3xy^2 + 2x − 5
= x^2 y − 4x^2 y + xy^2 − 3xy^2 + 6x + 2x + 4 − 5
= (1 − 4)x^2 y + (1 − 3)xy^2 + (6 + 2)x − 1
= −3x^2 y − 2xy^2 + 8x − 1
Adding/Subtracting Fractions
With the distributive property and our ability to combine like terms, we can
simplify the sum and difference of fractions. Remember that the denominators
must be the same before we add or subtract fractions. Once we have the frac-
tions written with the LCD, we add or subtract their numerators. This involves
combining terms.
We generally leave the denominators factored.
EXAMPLES
Find the sum or difference.
2
41
2
4
1
11
4
4
21 4
x
x
xx
x
x
x
x
x
x
xxx
−
+
+
=
−
⋅ +
+
+
+
⋅ −
−
= ()++ −()
(()xx() ()()()(
xxx
xx
xx
+− xx
= ++ −
+−
= −+
14 +
22 4
14
(^2222)
1 −−4)
EXAMPLES
Find the sum or difference.