Chapter 6 FaCtoring and the distributive ProPerty 151- −
−
(^10) =
73
x^2
x
4.^98
6
+
−−y=
x5.^85
58
xy
xy−
−=6.^543
916
xy x
x−+
−=✔SOLUTIONS
1.^1111
yx− yx xy xy
=
−− +=
−−= −
()()−2.^16
4
16
416
416
− 4=
−− +=
−−= −
xx()()xx−- −
−
= −
−− += −
−−(^10) =−−
73
10
73
10
37
10
3
x^2222
x
x
x
x
x
x
()()x
()
−−
7 −
10
37
x^2
x
4.^98
6
98
698
698
6+
−−= +
−+=−+
+=−−
+y
xy
xy
xy
() x()5.^85
58
85
5885
85xy 85
xyxy
xyxy
xy− xy
−= −
−− += −
−−=−−
()()( ))
851
11
xy−=− =−6.^543
916
543
916543
16 9xy x
xxy x
xxy x
x−+
−= −+
−− += −+
()−−( ))=−−()+
−=−+−
−543
16 9
543
16 9xy x
x
xy x
xThe FOIL Method
The FOIL method helps us to use the distributive property to expand expres-
sions such as (x + 4)(2x – 1). The letters in “FOIL” describe the sums and
products in these expansions.