Chapter 6 FaCtoring and the distributive ProPerty 151
- −
−
(^10) =
73
x^2
x
4.^98
6
+
−−
y=
x
5.^85
58
xy
xy
−
−
=
6.^543
916
xy x
x
−+
−
=
✔SOLUTIONS
1.^1111
yx− yx xy xy
=
−− +
=
−−
= −
()()−
2.^16
4
16
4
16
4
16
− 4
=
−− +
=
−−
= −
xx()()xx−
- −
−
= −
−− +
= −
−−
(^10) =−−
73
10
73
10
37
10
3
x^2222
x
x
x
x
x
x
()()x
()
−−
7 −
10
37
x^2
x
4.^98
6
98
6
98
6
98
6
+
−−
= +
−+
=−+
+
=−−
+
y
x
y
x
y
x
y
() x
()
5.^85
58
85
58
85
85
xy 85
xy
xy
xy
xy
xy
− xy
−
= −
−− +
= −
−−
=−−
()()
( ))
85
1
1
1
xy−
=− =−
6.^543
916
543
916
543
16 9
xy x
x
xy x
x
xy x
x
−+
−
= −+
−− +
= −+
()−−( ))
=−−()+
−
=−+−
−
543
16 9
543
16 9
xy x
x
xy x
x
The FOIL Method
The FOIL method helps us to use the distributive property to expand expres-
sions such as (x + 4)(2x – 1). The letters in “FOIL” describe the sums and
products in these expansions.