Chapter 6 FaCtoring and the distributive ProPerty 161
PRACTICE
Use the formula to factor the difference of two squares.
- x^4 − 1 =
- x^8 − 16 =
- x^81
16
– =
- 256x^4 − 1 =
- x^4 − 81 =
- 81x^4 − 1 =
7.^1
64
x^6 – = 1
- 16x^4 − 81 =
9.^16
81
x^4 – 16 =
- x^12 − 1 =
✔SOLUTIONS
- x^4 − 1 = (x^2 − 1)(x^2 + 1) = (x − 1)(x + 1)(x^2 + 1)
- x^8 − 16 = (x^4 − 4)(x^4 + 4) = (x^2 − 2)(x^2 + 2)(x^4 + 4)
- xx^841 xx^42
16
1
4
1
4
1
2
– = – + = –
xx^241
2
1
4
+ +
- 256x^4 − 1 = (16x^2 − 1)(16x^2 + 1) = (4x − 1)(4x + 1)(16x^2 + 1)
- x^4 − 81 = (x^2 − 9)(x^2 + 9) = (x − 3)(x + 3)(x^2 + 9)
- 81x^4 − 1 = (9x^2 − 1)(9x^2 + 1) = (3x − 1)(3x + 1)(9x^2 + 1)
7.^1
64
1 1
8
1 1
8
xx^63 – = – x^3 + 1
- 16x^4 − 81 = (4x^2 − 9)(4x^2 + 9) = (2x − 3)(2x + 3)(4x^2 + 9)
9.^16
81
16 4
9
4 4
9
xx^42 – = – x^2 + 4
= ^2 – + +
3
2 2
3
2 4
9
xx x (^24)
- x^12 − 1 = (x^6 − 1)(x^6 + 1) = (x^3 − 1)(x^3 + 1)(x^6 + 1)
PRACTICE
Use the formula to factor the difference of two squares.