Algebra Demystified 2nd Ed

(Marvins-Underground-K-12) #1
Chapter 6 FaCtoring and the distributive ProPerty 161

PRACTICE
Use the formula to factor the difference of two squares.


  1. x^4 − 1 =

  2. x^8 − 16 =

  3. x^81
    16


–  = 


  1. 256x^4 − 1 =

  2. x^4 − 81 =

  3. 81x^4 − 1 =
    7.^1
    64


x^6 –  =  1


  1. 16x^4 − 81 =
    9.^16
    81


x^4 –  16 = 


  1. x^12 − 1 =


✔SOLUTIONS



  1. x^4 − 1 = (x^2 − 1)(x^2 + 1) = (x − 1)(x + 1)(x^2 + 1)

  2. x^8 − 16 = (x^4 − 4)(x^4 + 4) = (x^2 − 2)(x^2 + 2)(x^4 + 4)

  3. xx^841 xx^42
    16


1
4

1
4

1
2

–  =  –  +  =  – 





























xx^241
2

1
4

+  + 


  1. 256x^4 − 1 = (16x^2 − 1)(16x^2 + 1) = (4x − 1)(4x + 1)(16x^2 + 1)

  2. x^4 − 81 = (x^2 − 9)(x^2 + 9) = (x − 3)(x + 3)(x^2 + 9)

  3. 81x^4 − 1 = (9x^2 − 1)(9x^2 + 1) = (3x − 1)(3x + 1)(9x^2 + 1)
    7.^1
    64


1 1
8

1 1
8

xx^63 –  =  –  x^3 +  1












  1. 16x^4 − 81 = (4x^2 − 9)(4x^2 + 9) = (2x − 3)(2x + 3)(4x^2 + 9)
    9.^16
    81


16 4
9

4 4
9

xx^42 –  =  –  x^2 +  4










= ^2 –  +  + 
3

2 2
3

2 4
9

 xx x (^24)














  1. x^12 − 1 = (x^6 − 1)(x^6 + 1) = (x^3 − 1)(x^3 + 1)(x^6 + 1)


PRACTICE
Use the formula to factor the difference of two squares.
Free download pdf