Algebra Demystified 2nd Ed

(Marvins-Underground-K-12) #1
Chapter 6 FaCtoring and the distributive ProPerty 165

x^10 – 2x^5 – 3 = (x^5 – 3)(x^5 + 1)


x– 4 – 2x– 2 – 3 = (x– 2 – 3)(x– 2 + 1)


x2/3 – 2x1/3 – 3 = (x1/3 – 3)(x1/3 + 1)


x^1 – 2x1/2 – 3 = (x1/2 – 3)(x1/2 + 1)


For any nonzero power, xx^2 ⋅PowerP−− 23 ower factors as ()xxPowerP−+ 31 ()ower. In
general, we factor the expression ax^2 ⋅PowerP++bxower c in the same way that we
factor ax^2 ++bx c, except that we work with xPower instead of x.

EXAMPLES
Factor the expression.

4 x^6 + 20x^3 + 21 = (2x^3 + 3)(2x^3 + 7)
x2/3 – 5x1/3 + 6 = (x1/3 – 2)(x1/3 – 3)
x^4 + x^2 – 2 = (x^2 + 2)(x^2 – 1) = (x^2 + 2)(x – 1)(x + 1)
xx –  28 –  = xx^11 –  28 //^21 –  = ()xx^21 –  42 ( /^2 +  )) = ()()xx –  42 + 

xx –  214 –  52   = xx^12 //– ^14 –  15 = ()xx^14 //–  5 (^14 ++  35 ) = ()()^44 xx –  +  (^3)
PRACTICE
Factor the expression.



  1. x^4 − 3x^2 + 2 =

  2. x^10 − 3x^5 + 2 =

  3. x2/5 − 3x1/5 + 2 =

  4. x−6 − 3x−3 + 2 =

  5. x1/2 − 3x1/4 + 2 =

  6. x^4 + 10x^2 + 9 =

  7. x^6 − 4x^3 − 21 =

  8. 4x^6 + 4x^3 − 35 =

  9. 10x^10 + 23x^5 + 6 =

  10. 9x^4 − 6x^2 + 1 =

  11. x2/7 − 3x1/7 − 18 =

  12. 6x2/3 − 7x1/3 − 3 =

  13. x1/3 + 11x1/6 + 10 =


EXAMPLES
Factor the expression.

PRACTICE
Factor the expression.
Free download pdf