Chapter 6 FaCtoring and the distributive ProPerty 171
5.^3
2448
7
624
1
42024
2
246
7
6
xx^22 xxx
xx x
+−
+
−
−
+−
=
−+
+
()()( −−
−
4 +−
1
)( 46 xx)( 1 )
LCD = 12(x − 4)(x + 6)(x − 1)
6.^24
71269
24
(^223433)
x
xx
x
xx
x
xx
x
xx
−
−+
−
−+
= −
−−
−
()()()−−( ))
LCD = (x − 3)(x − 3)(x − 4) = (x − 3)^2 (x − 4)
7.^67
5
3 67
5
3
(^221)
x
x
x
x
−
−
+= −
−
- LCD = x^2 − 5
Once we find the LCD, we rewrite each fraction in terms of the LCD, that
is, we multiply each fraction by the “missing” factors over themselves. Once we
do this, each fraction has the same denominator, so we can add or subtract the
numerators.
EXAMPLES
Find the sum or difference.
1
23 9
1
xx^223133
x
xxx
x
+− xx
−
+−
()()()−+()
LCD = (x + 3)(x − 1)(x − 3)
The factor x – 3 is “missing” in the first denominator so multiply the first
fraction by x
x
−
−
3
3
. An x – 1 is “missing” from the second denominator so
multiply the second fraction by x
x
−
−
1
1
.
1
31
3
333
1
1
3
3
()() ()()
()(
xx
x
x
x
xx
x
x
x
x
+−
⋅ −
−
+
−+
⋅ −
−
= −
+ xxx
xx
−−xxx
+ −
13 +−−
1
)( ) 313
()
()()()
xxx
xxx
xxx
xxx
−+ −
+−−
= −+ −
+−−
31
313
3
31
()^2
()()()()()( 33
3
313
2
)( )( )( )
= −
+−−
x
xxx
EXAMPLES
Find the sum or difference.