Chapter 1 FraCtions 19
SOLUTIONS
1.^11
12
5
18
11
12
3
3
5
18
2
2
33
36
10
36
−= ⋅^2
−⋅
=−=^33
36
2.^7
15
9
20
7
15
4
4
9
20
3
3
28
60
27
60
55
6
+=⋅
+⋅
=+=
00
11
12
=
3.^23
24
7
16
23
24
2
2
7
16
3
3
46
48
21
48
+= ⋅^6
+⋅
=+=^77
48
4.^3
8
7
20
3
8
5
5
7
20
2
2
15
40
14
40
29
40
+=⋅
+⋅
=+=
5.^1
6
4
15
1
6
5
5
4
15
2
2
5
30
8
30
13
30
+=⋅
+⋅
=+=
6.^8
75
3
10
8
75
2
2
3
10
15
15
16
150
45
150
+=⋅
+⋅
=+==^61
150
7.^35
54
7
48
35
54
8
8
7
48
9
9
280
432
63
43
−=⋅
−⋅
=−
22
217
432
=
8.^15
88
3
28
15
88
7
7
3
28
22
22
105
616
+= ⋅^66
+⋅
=+
6616
171
616
=
9.^119
180
17
210
119
180
7
7
17
210
6
6
+= ⋅^833
+⋅
=
11260
102
1260
935
1260
187
252
+==
Adding More than Two Fractions
Finding the LCD for three or more fractions is pretty much the same as finding
the LCD for two fractions. One way to approach the problem is to work with
two fractions at a time. For instance, in the sum^56 ++^34101 , we can begin with
(^56) and 43. The LCD for these fractions is 12.
5
6
5
6
2
2
10
12
=⋅= and^3
4
3
4
3
3
9
12
=⋅=
The sum^56 ++^34101 can be condensed to the sum of two fractions.
5
6
3
4
1
10
5
6
3
4
1
10
10
12
9
12
1
10
++ =+^19
+=+
+=
112
1
10
- ✔SOLUTIONS