Algebra Demystified 2nd Ed

(Marvins-Underground-K-12) #1
Chapter 1 FraCtions 19

SOLUTIONS

1.^11
12


5
18

11
12

3
3

5
18

2
2

33
36

10
36

−= ⋅^2





−⋅





=−=^33
36

2.^7
15


9
20

7
15

4
4

9
20

3
3

28
60

27
60

55
6

+=⋅







+⋅





=+=
00

11
12

=

3.^23
24


7
16

23
24

2
2

7
16

3
3

46
48

21
48

+= ⋅^6





+⋅





=+=^77
48

4.^3
8


7
20

3
8

5
5

7
20

2
2

15
40

14
40

29
40

+=⋅







+⋅





=+=

5.^1
6


4
15

1
6

5
5

4
15

2
2

5
30

8
30

13
30

+=⋅







+⋅





=+=

6.^8
75


3
10

8
75

2
2

3
10

15
15

16
150

45
150

+=⋅







+⋅





=+==^61
150

7.^35
54


7
48

35
54

8
8

7
48

9
9

280
432

63
43

−=⋅







−⋅





=−
22

217
432

=

8.^15
88


3
28

15
88

7
7

3
28

22
22

105
616

+= ⋅^66





+⋅





=+
6616

171
616

=

9.^119
180


17
210

119
180

7
7

17
210

6
6

+= ⋅^833





+⋅





=
11260

102
1260

935
1260

187
252

+==

Adding More than Two Fractions


Finding the LCD for three or more fractions is pretty much the same as finding
the LCD for two fractions. One way to approach the problem is to work with
two fractions at a time. For instance, in the sum^56 ++^34101 , we can begin with

(^56) and 43. The LCD for these fractions is 12.
5
6
5
6
2
2
10
12
=⋅= and^3
4
3
4
3
3
9
12
=⋅=
The sum^56 ++^34101 can be condensed to the sum of two fractions.
5
6
3
4
1
10
5
6
3
4
1
10
10
12
9
12
1
10
++ =+^19



+=+




+=
112
1
10



  • ✔SOLUTIONS

Free download pdf