Chapter 1 FraCtions 19SOLUTIONS1.^11
12
5
1811
123
35
182
233
3610
36−= ⋅^2
−⋅
=−=^33
362.^7
15
9
207
154
49
203
328
6027
6055
6+=⋅
+⋅
=+=
0011
12=3.^23
24
7
1623
242
27
163
346
4821
48+= ⋅^6
+⋅
=+=^77
484.^3
8
7
203
85
57
202
215
4014
4029
40+=⋅
+⋅
=+=5.^1
6
4
151
65
54
152
25
308
3013
30+=⋅
+⋅
=+=6.^8
75
3
108
752
23
1015
1516
15045
150+=⋅
+⋅
=+==^61
1507.^35
54
7
4835
548
87
489
9280
43263
43−=⋅
−⋅
=−
22217
432=8.^15
88
3
2815
887
73
2822
22105
616+= ⋅^66
+⋅
=+
6616171
616=9.^119
180
17
210119
1807
717
2106
6+= ⋅^833
+⋅
=
11260102
1260935
1260187
252+==Adding More than Two Fractions
Finding the LCD for three or more fractions is pretty much the same as finding
the LCD for two fractions. One way to approach the problem is to work with
two fractions at a time. For instance, in the sum^56 ++^34101 , we can begin with(^56) and 43. The LCD for these fractions is 12.
5
6
5
6
2
2
10
12
=⋅= and^3
4
3
4
3
3
9
12
=⋅=
The sum^56 ++^34101 can be condensed to the sum of two fractions.
5
6
3
4
1
10
5
6
3
4
1
10
10
12
9
12
1
10
++ =+^19
+=+
+=
112
1
10
- ✔SOLUTIONS