84 algebra De mystif ieD
DeMYSTiFieD / algebra DeMYSTiFieD / HuttenMuller / 000-0 / Chapter 4
- –x – (–14) = –x + 14
- –x – 9 = –x + (–9)
- −^4 +=
5
2
3
− (^4) ⋅+⋅=− +=−+=−
5
3
3
2
3
5
5
12
15
10
15
12 10
15
2
15
- 2381 −=^1417
8
13
4
17
8
13
4
2
2
17
8
26
8
17 26
8
9
8
−=−⋅=−= − =−
- −−= 4129 21 −^38 −=− ⋅−⋅=− −=−−=−
9
3
2
38
9
2
2
3
2
9
9
76
18
27
18
76 27
18
103
188
12.^5
36
−= 2 5
36
2
1
36
36
5
36
72
36
572
36
67
36
−⋅ =−=− =−
13.^6
25
2
3
14
15
+− =^6
25
3
3
2
3
25
25
14
15
5
5
18
75
50
75
70
75
18 50 70
7
⋅+⋅−⋅= +−= +−
55
2
75
=−
- −^4 +− =
3
5
6
8
21
− (^4) ⋅+⋅− ⋅=− +−=−+−
3
14
14
5
6
7
7
8
21
2
2
56
42
35
42
16
42
56 35 16
442
37
42
=−
15.^1345 −− 21 167 =^9
5
7
2
13
7
9
5
14
14
7
2
35
35
13
7
10
10
126 245 130
7
−− =⋅ −⋅ −⋅= −−
00
249
70
=−
Multiplication and Division with Negative Numbers
When taking the product of two or more quantities when one or more of them
is negative, we take the product as if the negative signs were not there. An even
number of negative factors gives us a positive product and an odd number of
negative factors gives us a negative product. Similarly, for a quotient (or fraction),
two negative numbers give us a positive quotient, and one negative number and
one positive number gives us a negative quotient. The rules for multiplying or
dividing negative numbers are below.
()()
()()
()
()()
−−=
−=−=−
÷− =− ÷
−÷−=
abab
ab ab ab
abab
abaab÷