84 algebra De mystif ieD
DeMYSTiFieD / algebra DeMYSTiFieD / HuttenMuller / 000-0 / Chapter 4- –x – (–14) = –x + 14
- –x – 9 = –x + (–9)
- −^4 +=
5
2
3− (^4) ⋅+⋅=− +=−+=−
5
3
3
2
3
5
5
12
15
10
15
12 10
15
2
15
- 2381 −=^1417
8
13
417
813
42
217
826
817 26
89
8−=−⋅=−= − =−- −−= 4129 21 −^38 −=− ⋅−⋅=− −=−−=−
9
3
238
92
23
29
976
1827
1876 27
18103
18812.^5
36
−= 2 5
362
136
365
3672
36572
3667
36−⋅ =−=− =−13.^6
25
2
314
15+− =^6
253
32
325
2514
155
518
7550
7570
7518 50 70
7⋅+⋅−⋅= +−= +−
552
75=−- −^4 +− =
3
5
68
21− (^4) ⋅+⋅− ⋅=− +−=−+−
3
14
14
5
6
7
7
8
21
2
2
56
42
35
42
16
42
56 35 16
442
37
42
=−
15.^1345 −− 21 167 =^9
5
7
213
79
514
147
235
3513
710
10126 245 130
7−− =⋅ −⋅ −⋅= −−
00249
70=−Multiplication and Division with Negative Numbers
When taking the product of two or more quantities when one or more of them
is negative, we take the product as if the negative signs were not there. An even
number of negative factors gives us a positive product and an odd number of
negative factors gives us a negative product. Similarly, for a quotient (or fraction),
two negative numbers give us a positive quotient, and one negative number and
one positive number gives us a negative quotient. The rules for multiplying or
dividing negative numbers are below.()()
()()
()
()()−−=
−=−=−
÷− =− ÷
−÷−=abab
ab ab ab
abab
abaab÷