- RADICAL EXPRESSIONS AND QUADRATIC EQUATIONS–
639.Solve using the quadratic formula:
^16 x^2 – ^53 x+1 = 0
a.–5 19
b. 5 19
c. 5 i 19
d.–5i 19
640.Solve using the quadratic formula:
(x– 3)(2x+ 1) = x(x– 4)
a.
b.
c.
d.
Set 41 (Answers begin on page 222)
Solving quadratic equations using radical and graphical
methods is the focus of this problem set.
641.Solve using radical methods: 4x^2 = 3
a. ^32
b. ^23
c.i ^32
d.i ^23
642.Solve using radical methods: –3x^2 = –9
a. 3 i
b. 3
c. 3
d.i 3
643.Solve using radical methods: (4x+ 5)^2 = –49
a.
b.
c.
d.
644.Solve using radical methods: (3x– 8)^2 = 45
a.
b.
c.
d.
645.Solve using radical methods: (–2x+ 1)^2 – 50 =0
a.
b.
c.
d.
646.Solve using radical methods: –(1 – 4x)^2 – 121 = 0
a.
b.
c.
d.
647.Find the real solutions of the following equa-
tion, if they exist, using graphical methods:
5 x^2 – 24 = 0
a. ≈2.191
b. 4.8
c. ≈ 2.191
d.The solutions are imaginary.
648.Find the real solutions of the following equa-
tion, if they exist: 2x^2 = –5x– 4
a.0.5, 1.5
b.–1.5, 0
c.–0.5, 0.5
d.The solutions are imaginary.
–1i^11
4
^1 i^11
4
^1 ^11 i
4
–1^11 i
4
–1^5 i^2
2
^1 ^5 ^2
2
^1 ^5 i^2
2
–1^5 ^2
2
–8^3 i^5
3
^8 ^3 ^5
3
–8^3 ^5
3
–8^3 i^5
3
^7 ^5 i
4
–7^5 i
4
–5^7 i
4
^5 ^7 i
4
–1i^13
2
^1 i^13
2
^1 ^13
2
–1^13
2