794.If 5^3 x – 1 = 7, then x=
a.^13 (1–log 5 7)
b.–3(1 + log 5 7)
c.–^13 (1–log 5 7)
d.^13 (1 + log 5 7)
795.If logax= 2 and logay = –3, then loga=
a.–^23
b. 11
c.–^32
d. 8
- 3 log^32 =
a. 2
b. 1
c. 0
d.–1
797.loga(ax)=
a.ax
b. 0
c.x
d.xa
798.If 3 ln ^1 x= ln 8, then x=
a.^12
b. 2
c.–^12
d.–2
799.e–
(^12) ln 3
a.–
b.
c.
d.–
800.If ln x= 3 and ln y= 2, then ln =
a.^25
b.–^25
c.^52
d.–^52
Set 51 (Answers begin on page 249)
This problem set focuses on basic features of logarith-
mic functions, and simplifying logarithmic expressions
using the logarithm rules.
801.Which of the following is equivalent to
3 ln (xy^2 ) – 4 ln(x^2 y) + ln(xy)?
a.ln [xy
3
4 ]
b.ln [y^3 x^4 ]
c.ln [xy 3
4
]
d.ln [y^3 ] + ln [x^4 ]
802.Simplify: log 8 2 + log 84
a. 1
b.–1
c.2 log 82
d. 3
803.Simplify: 4 log 93
a. 8
b.–8
c. 2
d.–2
804.Which of the following is equivalent to
ln 18x^3 – ln 6x?
a.ln 3x^2
b.2 ln 3x
c.ln (3x)^2
d.ln (108x^4 )
e^2 y
x
^3
3
^3
3
^3
3
^3
3
x
y^3
- ELEMENTARY FUNCTIONS–