1001 Algebra Problems.PDF

(Marvins-Underground-K-12) #1

  • ELEMENTARY FUNCTIONS–


826.Solve: log 2 (2x– 1) + log 2 (x+ 2) = 2
a. 0
b. 1
c.0 and 1
d.none of the above


827.Solve: log(x– 2) = 2 + log(x+3)


a.^3909 ^2
b. 3
c. 2
d.There is no solution to this equation.

828.Assuming that b1, solve:b3 logbx= 1
a.b
b.b^2
c. 0
d. 1


829.Solve for x: y = e–a(b + c)


a.x=–a^1 (ab+ lny)
b.x= –b+ ln y
c.x= ^1 a(ab–ln y)
d.x=–ab +aln y

830.Solve for: 3 ln 4y+ ln A= ln B:
a.y= ^14 e

(^13) (ln B–ln A)
b.y= ^14 e
(^13) (ln B+ ln A)
c.y=–^14 e
(^13) (ln AB)
d.y=–^14 e
(^13) (ln AB)
831.Solve for x:l + ln (xy) = In z
a.x= eln z+ ln y–1
b.x= eln z–ln y+ 1
c.x= eln z–ln y–1
d.x= e–(ln z+ ln y–1)
832.Solve for t:P= Poe–kt
a.t=–^1 kln (PP 0 )
b.t=–kln (PP 0 )
c.t= ^1 kln (–PP 0 )
d.t=–^1 kln (PP^0 )

Free download pdf