1001 Algebra Problems.PDF

(Marvins-Underground-K-12) #1
the abterms from the numerator and
denominator, leaving ab.


  1. c.First, cube the 4g^2 term. Cube the constant 4
    and multiply the exponent ofgby 3: (4g^2 )^3 =
    64 g^6. Next, multiply 64g^6 by g^4. Add the expo-
    nents of the gterms. (64g^6 )(g^4 ) = 64g.^10 Finally,
    taking the square root of 64g^10 yields 8g^5 , since
    (8g^5 )(8g^5 ) = 64g.^10

  2. e.First, find the square root of 9pr. 9 pr=


9 pr= 3pr.The denominator (pr) has a
negative exponent, so it can be rewritten in the
numerator with a positive exponent. The
expression prcan be written as (pr)
since a value raised to the exponent ^12 is
another way of representing the square root of
the value. The expression is now 3(pr)(pr).
To multiply the prterms, add the exponents.^12 
+ ^32 = ^42 = 2, so =3(pr)(pr)= 3(pr)^2 = 3p^2 r^2.


  1. e.Substitute 20 forn:(^220  5 ) =


(10 5 ) = (10 5 ). Cancel the  5 
terms and multiply the fraction by 10:
(10 5 ) = 5(1 2 0)= ^520 = 25


  1. c.^ = = =

  2. d. =^4 = ^481 = ^43 ^4 = 3

  3. d.x^2 + 4x+ 4= (x+ 2)^2 = x+ 2

  4. d.^4  32 x^8 = ^42 ^4  2 (x^2 )^4 = ^42 ^4 ^42 ^4 (x^2 )^4
    = 2x2 4√ 4

  5. b.^4 x^21 = ^4 (x^5 )^4 x= ^4 (x^5 )^4 ^4 x= x^5 ^4 x

  6. b.^3  54 x^5 = ^32  33 x^3 x^2 = 3x^32 x^2

  7. a.x^3 + 40x^2 + 40 0 x= x(x^2 + 40 x+ 400)=
    x(x+ 20)^2 = (x+ 20) x


Set 38 (Page 93)


  1. b.–25=  25 (–1)=  5 ^2 i^2 =
     5 ^2 i^2 = 5i

  2. a.–32= (32(–1)=  32 –1= (4√2)(i) =
    4 i 2 

  3. a.


-  48 + 2 27 –  75 = – 4 ^2  3 + 2 3 ^2  3
-  5 ^2  3 = –4 3 + 6 3 – 5 3 =
(–4 + 6 – 5) 3 = –3 3 


  1. d. 3  3 + 4 5 – 8 3 = (3 – 8) 3  + 4 5 =
    –5 3 + 4 5 

  2. d.First, simplify each radical expression. Then,
    because the variable/radical parts are alike, we
    can add the coefficients:


xy 8 xy^2 + 3y^2  18 x^3 =xy(2y) 2 x+ 3y^2 (3x)
 2 x= 2xy^2  2 x+ 9xy^2  2 x= 11xy^2  2 x
Same Same


  1. c.We first simplify each fraction. Then, we
    find the LCD and add.


+ = + = + =


^33 + 4^ ^55 = =



  1. a.(5 –  3 )(7 +  3 ) = 5(7) + 5( 3 ) – 7( 3 )


-  3 ^2 = 35 + (5 – 7) 3 – 3 = 32 – 2 3 


  1. b.(4 +  6 )(6 –  15 ) = 24 – 4 15 + 6 6 –
     90 = 24 –4 15 + 6 6 – 3 10 

  2. a. = = =


= –2 +i


  1. c.(4 + 2i)(4 –2i) = 16 – (2i)^2 = 16 – 2^2 i^2 =
    16 – (4)(–1) = 16 + 4= 20

  2. d.(4 + 2i)^2 = 16 +(4)(2i) + (2i)(4) + (2i)^2 =
    16 + 16i+ 2^2 i^2 = 16 +16i–4 = 12 + 16i


5(–2 + i)
5

–10 + 5i
5
–10 + ^25 –1
5
–10 + –25
5

^29 ^2 
15
^9 ^2 + 20^2 
15
^2
3
^3 ^2 
5

^4 ^2 
3
^3 ^2 
5
^32 
 9 
^18 
 25 
^32
9
^18
25

^243
3
^4243 
^43 

^5 ^5 
3
^5 ^2 ^5
 3 ^2
^125 
 9 
^125
9

^5
2  5 

^5
2  5 
^25 
 20 

20 + 5
 20 

^32 ^12

^32 ^12

^12

^32

ANSWERS & EXPLANATIONS–

} }

Free download pdf