- b.The graph ofy= g(x+ h) + kis obtained by
shifting the graph ofy= g(x) right (resp. left)
hunits ifh< 0 (resp.h> 0), and up (resp.
down) kunits ifk> 0 (resp.k< 0). Here,
observe that f(x) = (x– 2)^3 – 1 = g(x– 2) – 1,
so the correct choice is b.
- d.The graph ofy= g(x+ h) + kis obtained by
shifting the graph ofy= g(x) right (resp. left)
hunits ifh0 (resp.h0), and up (resp.
down) kunits ifk0 (resp.k0). Here,
observe that f(x) = x– 5– 3 = g(x– 5) – 3,
so the correct choice is d.
- d.The graph ofy= g(x+ h) + kis obtained by
shifting the graph ofy= g(x) right (resp. left)
hunits ifh0 (resp.h0), and up (resp.
down) kunits ifk0 (resp.k0). Here,
observe that f(x) = 2x+ 3= g(x+ 3), so the
correct choice is d.
- b.The graph ofy= g(x+ h) + kis obtained by
shifting the graph ofy= g(x) right (resp. left)
hunits ifh0 (resp.h0), and up (resp.
down) kunits ifk0 (resp.k0). Here,
observe that,f(x) = |x+ 6| + 4 = g(x+ 6) + 4,
so that the correct choice isa.
- b.The graph ofy= –g(x+ h) + kis obtained
by shifting the graph ofy= g(x) right (resp.
left) hunits ifh0 (resp.h0), then reflect-
ing the graph over the x-axis, and finally shift-
ing the graph up (resp. down) kunits ifk 0
(resp.k0). Here, observe that f(x) = –|x– 1|
+ 5 = –g(x– 1) + 5, so the correct choice isb.
- b.The graph ofy= –g(x+ h) + kis obtained
by shifting the graph ofy= g(x) right (resp.
left) hunits ifh0 (resp.h0), then reflect-
ing the graph over the x-axis, and finally shift-
ing the graph up (resp. down) kunits ifk 0
(resp.k0). Here, observe that f(x) = –(x+ 3)^3 +
5 = –g(x+ 3) + 5, so the correct choice isa.
748. d.The graph ofy= –g(x+ h) + kis obtained
by shifting the graph ofy= g(x) right (resp.
left) hunits ifh0 (resp.h0), then reflect-
ing the graph over the x-axis, and finally shift-
ing the graph up (resp. down) kunits ifk 0
(resp.k0). Hence, the correct choice is d.
749. b.The graph ofy= g(x+ h) + kis obtained by
shifting the graph ofy= g(x) right (resp. left)
hunits ifh0 (resp.h0), and up (resp.
down) kunits ifk0 (resp.k0). Hence,
the correct choice isa.
750. c.The graph ofy= –g(x+ h) + kis obtained
by shifting the graph ofy= g(x) right (resp.
left) hunits ifh0 (resp.h0), then reflect-
ing the graph over the x-axis, and finally shift-
ing the graph up (resp. down) kunits ifk 0
(resp.k0). Hence, the correct choice isc.
751. b.The graph ofy= –g(x+ h) + kis obtained
by shifting the graph ofy= g(x) right (resp.
left) hunits ifh0 (resp.h0), then reflect-
ing the graph over the x-axis, and finally shift-
ing the graph up (resp. down) kunits ifk 0
(resp.k0). Hence, the correct choice isb.
752. d.The graph ofy = g(x+ h) + kis obtained by
shifting the graph ofy= g(x) right (resp. left)
hunits ifh0 (resp.h0), then reflecting
the graph over the x-axis, and finally shifting
the graph up (resp. down) kunits ifk 0
(resp.k0). Hence, the correct choice is d.
Set 48 (Page 115)
- b.e^3 x–2y= e^3 xe–2y= (ex)^3 (ey)–2– 2^33 –2= ^89
- b. 2 x 2 x+1 =^2 x+x+1= 2^2 x+1
- c.(4x–1)^2 16 = 42(x–1)16 = 4^2 x–2 42 = 4^2 x–2+2=
42 x^2
- c.= (5^4 x–(2x–6))= (5^2 x+6))= 5(2x+6)
= 5x+3
^54 x ^21 ^12 ^21 ^21
52 x – 6
ANSWERS & EXPLANATIONS–