Check Point Answers 319
Chapter 16
- SA = 2(15 v 24) + 2(15 v 10) + 2(24 v 10) =
1,500 cm^2
- SA = 2(
1
2 v^5 v 12) + 5(8 + 12 + 13) =
225 square inches
- SA = 2 v 65 + 42 v 30 = 1,390 cm^2
- SA = 2 v 387 + 5 v 15 v 4 = 1,074 square
inches
- SA = 6 v 172 = 1,734
- V = 7^3 = 343 cubic inches
- V = 12 v 21 v 15 = 3,780 cm^3
- V =
1
2 v^3 v^4 v 6 = 36 cubic inches
- V = 387 v 8 = 3,096 cubic inches
- V = 65 v 50 = 3,250 cm^3
- SA = 4^2 +
1
2 (16 v 5) = 16 + 40 = 56 square
inches
- SA = 62.4 +
1
2 (36 v 10) = 62.4 + 180 =
242.4 cm^2
- SA = 172 +
1
2 (50 v 18) = 172 + 450 =
622 cm^2
- SA = 260 +
1
2 (60 v 10) = 260 + 300 = 560
square inches
- SA = 10^2 +
1
2 (4 0 v 13) = 100 + 260 = 360
square inches
- If the slant height is 13 inches and half the
side is 5 inches, the height is 12 inches.
V^1
3
10 12^2 400 cubic inches.
- If the slant height is 5 inches and half the
side is 2 inches, the height is^21 4.58
inches. V^1
3
42 4.58 cubic inches.
- The base of the pyramid is an equilateral
triangle with a side of 12 cm and
an area of 62.4 square centimeters.
The area is half the apothem times
the perimeter, so
and the apothem is a≈347.. Use the
Pythagorean Theorem with the apothem
and slant height to find the height.
ah l^222 += becomes^34710
.^222
()+=h and
h≈938.. The height is approximately 9.38,
and V^1 ()()≈
3
×62 4..×9 38 195 104. cubic
centimeters.
- Use the area of the pentagon and its
perimeter to find the apothem. 172 1
2
= a() 50
so a≈688.. Use the Pythagorean
Theorem to find the height. ah l^222 +=
so () 688.^2 +=h^2 () 182 and h } 16. 63.
V^1 ()( )≈
3
× 172 ×16 63 953 45 cubic
centimeters.
- The regular hexagon that forms the base
has a perimeter of 60 inches and an
area of 260 square inches, so use the
formula A=^1 aP
2
to find the apothem.
260 1
2
= a() 60 means that the apothem
is 82
3
inches long. Use the Pythagorean
Theorem with the apothem and the slant
height to find the height. ah l^222 += so
and h } 4.99 inches.
V^1 ()( )≈
3
×× 260 4 99..432 37 cubic inches.
- h = 14 cm, r = 5 cm, SA = 2 52 S + 2S 5 14
= 190S cm^2 , V = S 52 14 = 350S cm^3.