Idiot\'s Guides Basic Math and Pre-Algebra

(Marvins-Underground-K-12) #1
Check Point Answers 319

Chapter 16



  1. SA = 2(15 v 24) + 2(15 v 10) + 2(24 v 10) =
    1,500 cm^2

  2. SA = 2(
    1
    2 v^5 v 12) + 5(8 + 12 + 13) =
    225 square inches

  3. SA = 2 v 65 + 42 v 30 = 1,390 cm^2

  4. SA = 2 v 387 + 5 v 15 v 4 = 1,074 square
    inches

  5. SA = 6 v 172 = 1,734

  6. V = 7^3 = 343 cubic inches

  7. V = 12 v 21 v 15 = 3,780 cm^3

  8. V =
    1
    2 v^3 v^4 v 6 = 36 cubic inches

  9. V = 387 v 8 = 3,096 cubic inches

  10. V = 65 v 50 = 3,250 cm^3

  11. SA = 4^2 +


1
2 (16 v 5) = 16 + 40 = 56 square
inches


  1. SA = 62.4 +


1
2 (36 v 10) = 62.4 + 180 =
242.4 cm^2


  1. SA = 172 +


1
2 (50 v 18) = 172 + 450 =
622 cm^2


  1. SA = 260 +


1
2 (60 v 10) = 260 + 300 = 560
square inches


  1. SA = 10^2 +


1
2 (4 0 v 13) = 100 + 260 = 360
square inches


  1. If the slant height is 13 inches and half the
    side is 5 inches, the height is 12 inches.
    V^1
    3


10 12^2  400 cubic inches.


  1. If the slant height is 5 inches and half the
    side is 2 inches, the height is^21 4.58
    inches. V^1
    3


42  4.58 cubic inches.


  1. The base of the pyramid is an equilateral
    triangle with a side of 12 cm and
    an area of 62.4 square centimeters.
    The area is half the apothem times
    the perimeter, so
    and the apothem is a≈347.. Use the
    Pythagorean Theorem with the apothem
    and slant height to find the height.
    ah l^222 += becomes^34710
    .^222
    ()+=h and
    h≈938.. The height is approximately 9.38,
    and V^1 ()()≈
    3


×62 4..×9 38 195 104. cubic
centimeters.


  1. Use the area of the pentagon and its
    perimeter to find the apothem. 172 1
    2
    = a() 50
    so a≈688.. Use the Pythagorean
    Theorem to find the height. ah l^222 +=
    so () 688.^2 +=h^2 () 182 and h } 16. 63.
    V^1 ()( )≈
    3


× 172 ×16 63 953 45 cubic
centimeters.


  1. The regular hexagon that forms the base
    has a perimeter of 60 inches and an
    area of 260 square inches, so use the
    formula A=^1 aP
    2


to find the apothem.
260 1
2

= a() 60 means that the apothem
is 82
3

inches long. Use the Pythagorean
Theorem with the apothem and the slant
height to find the height. ah l^222 += so
and h } 4.99 inches.

V^1 ()( )≈
3

×× 260 4 99..432 37 cubic inches.


  1. h = 14 cm, r = 5 cm, SA = 2™ 52 ™S + 2™S™ 5 ™ 14
    = 190S cm^2 , V = S™ 52 ™14 = 350S cm^3.

Free download pdf