114 Easy Algebra Step-by-Step
Solution
a.^461
21
xx^32886 x
x
888 x−
Step 1. Using the long division symbol ()) , arrange the terms of both the
dividend and the divisor in descending powers of the variable x.
4 61
21
xx^32886 x
x
888 x−
= (^21) ) 46 − + 81 +
xx^326
− (^1) ) 4 xx+ 8
Step 2. Divide the fi rst term of the dividend by the fi rst term of the divisor
and write the answer as the fi rst term of the quotient.
(^21) ) 4681
x xxx^32668
(^1) ) 4 + 88
2 x^2
Step 3. Multiply 2x – 1 by 2x^2 and enter the product under the dividend.
(^21) ) 4681
2
(^326)
2
x (^1) ) 4 xxx 6 + 888
x
42 xx^32 − 22
Step 4. Subtract 42 xx^3222 from the dividend, being sure to mentally change
the signs of both 4 x^3 and − 2 x^2.
(^21) ) 4681
4
(^326)
32
x xxx 6 8
xx
(^1) ) 4 + 88
2 x^2
2
− 4 x^2
Step 5. Bring down 8x, the next term of the dividend, and repeat steps
2–4.
(^21) ) 4681
2
4
(^326)
2
32
x xxx 6 8
x
xx
(^1) ) 4 + 88
− 2 x
2
−+
−
4 x^2
2
8
422 +
x
xx+ 2
6 x
In long division of polynomials, making
sign errors when subtracting is the most
common mistake.