Exponentiation 51
c. (.. 6 )−^2
Step 1. Write the reciprocal of the corresponding positive exponent version
of () 06. −^2.
2 1
() 06. =() 06. 2
−Step 2. Evaluate () 06.^2.1 1 1
0362
()^06. =() 06. 2 =() 06. 6 () 060. =.−d.^3
4⎛^3
⎝⎜⎛⎛
⎝⎝⎞
⎠⎟⎞⎞
⎠⎠−Step 1. Write the reciprocal of the corresponding positive exponent versionof3
4
3
⎛
⎝⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞
−
.3
4
(^31)
3
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞
⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ =
() 34
−Step 2. Evaluate3
4
3
⎛
⎝⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞
⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ and simplify.3
4
1 1
27 64
64
27
3
3⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞
⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ =
()^34
==
−/Notice that because x
xn
n− =^1 , the expression^1
x−ncan be simplifi ed as
follows:
11
xx 1 1x
nn x
1n
n
− === ; thus,1
x
−n=xn. Apply this rule in the following
problem.Problem Simplify.a.^1
2 −^5b.1
() 2 −^5