Exponentiation 51
c. (.. 6 )−^2
Step 1. Write the reciprocal of the corresponding positive exponent version
of () 06. −^2.
2 1
() 06. =() 06. 2
−
Step 2. Evaluate () 06.^2.
1 1 1
036
2
()^06. =() 06. 2 =() 06. 6 () 060. =.
−
d.^3
4
⎛^3
⎝⎜
⎛⎛
⎝⎝
⎞
⎠⎟
⎞⎞
⎠⎠
−
Step 1. Write the reciprocal of the corresponding positive exponent version
of
3
4
3
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞
⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞
−
.
3
4
(^31)
3
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞
⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ =
() 34
−
Step 2. Evaluate
3
4
3
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞
⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ and simplify.
3
4
1 1
27 64
64
27
3
3
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞
⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ =
()^34
==
−
/
Notice that because x
x
n
n
− =^1 , the expression^1
x−n
can be simplifi ed as
follows:
11
xx 1 1
x
nn x
1
n
n
− === ; thus,
1
x
−n=xn. Apply this rule in the following
problem.
Problem Simplify.
a.^1
2 −^5
b.
1
() 2 −^5