5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book May 7, 2018 9:52

90 STEP 4. Review the Knowledge You Need to Score High


Squeeze Theorem
If f, g, andh are functions defined on some open interval containinga such that
g(x)≤ f(x)≤h(x) for allxin the interval except possibly ataitself, and limx→ag(x)=
xlim→ah(x)=L, then limx→a f(x)=L.

Theorems on Limits
(1) limx→ 0
sinx
x
=1 and (2) limx→ 0
cosx− 1
x

= 0


Example 1
Find the limit if it exists: limx→ 0
sin 3x
x

.


Substituting 0 into the expression would lead to 0/0. Rewrite
sin 3x
x
as

3


3


·


sin 3x
x
and

thus, limx→ 0
sin 3x
x
=limx→ 0
3 sin 3x
3 x
=3 limx→ 0
sin 3x
3 x
.Asxapproaches 0, so does 3x. Therefore,

3 limx→ 0
sin 3x
3 x
=3 lim 3 x→ 0
sin 3x
3 x
=3(1)=3. (Note that lim 3 x→ 0
sin 3x
3 x
is equivalent to limx→ 0
sinx
x
by
replacing 3xbyx.) Verify your result with a calculator. (See Figure 6.1-7.)

[−10, 10] by [−4, 4]
Figure 6.1-7

Example 2
Find the limit if it exists: limh→ 0
sin 3h
sin 2h

.


Rewrite
sin 3h
sin 2h
as

3


(
sin 3h
3 h

)

2


(
sin 2h
2 h

).Ash approaches 0, so do 3h and 2h. Therefore,

hlim→ 0

sin 3h
sin 2h

=


3 lim 3 h→ 0
sin 3h
3 h
2 lim 2 h→ 0
sin 2h
2 h

=


3(1)


2(1)


=


3


2


. (Note that substitutingh=0 into the original


expression would have produced 0/0.) Verify your result with a calculator. (See Figure
6.1-8.)
Free download pdf