MA 3972-MA-Book May 7, 2018 9:52
92 STEP 4. Review the Knowledge You Need to Score High
6.2 Limits Involving Infinities
Main Concepts:Infinite Limits (asx→a), Limits at Infinity (asx →∞), Horizontal
and Vertical Asymptotes
Infinite Limits (asx→a)
If f is a function defined at every number in some open interval containinga, except
possibly ataitself, then
(1) limx→a f(x)=∞means that f(x) increases without bound asxapproachesa.
(2) limx→a f(x)=−∞means that f(x) decreases without bound asxapproachesa.
Limit Theorems
(1) Ifnis a positive integer, then
(a) limx→ 0 +
1
xn
=∞
(b) limx→ 0 −
1
xn
=
{
∞ ifnis even
−∞ ifnis odd
(2) If the limx→a f(x)=c,c>0, and limx→ag(x)=0, then
xlim→a
f(x)
g(x)
=
{
∞ ifg(x) approaches 0 through positive values
−∞ ifg(x) approaches 0 through negative values
(3) If the limx→a f(x)=c,c<0, and limx→ag(x)=0, then
xlim→a
f(x)
g(x)
=
{
−∞ ifg(x) approaches 0 through positive values
∞ ifg(x) approaches 0 through negative values
(Note that limit theorems 2 and 3 hold true forx→a+andx→a−.)
Example 1
Evaluate the limit: (a) lim
x→ 2 +
3 x− 1
x− 2
and (b) lim
x→ 2 −
3 x− 1
x− 2
.
(a) The limit of the numerator is 5 and the limit of the denominator is 0 through positive
values. Thus, lim
x→ 2 +
3 x− 1
x− 2
=∞. (b) The limit of the numerator is 5 and the limit of the
denominator is 0 through negative values. Therefore, limx→ 2 −
3 x− 1
x− 2
=−∞.
Verify your result with a calculator. (See Figure 6.2-1.)