5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1

MA 3972-MA-Book May 7, 2018 9:52


Limits and Continuity 93

[−5, 7] by [−40, 20]
Figure 6.2-1

Example 2


Find: limx→ 3 −
x^2
x^2 − 9


.


Factor the denominator obtaining limx→ 3 −
x^2
x^2 − 9
=limx→ 3 −
x^2
(x−3)(x+3)


. The limit of the numer-


ator is 9 and the limit of the denominator is (0)(6)=0 through negative values. Therefore,


limx→ 3 −
x^2
x^2 − 9
=−∞. Verify your result with a calculator. (See Figure 6.2-2.)


[−10, 10] by [−10, 10]
Figure 6.2-2

Example 3


Find: lim
x→ 5 −



25 −x^2
x− 5

.


Substituting 5 into the expression leads to 0/0. Factor the numerator



√^25 −x^2 into
(5−x)(5+x). Asx → 5 −,(x−5) < 0. Rewrite (x−5) as−(5−x). Asx → 5 −,
(5−x) > 0 and thus, you may express (5 − x)as



(5−x)^2 =


(5−x)(5−x).

Therefore, (x−5)=−(5−x)=−



(5−x)(5−x). Substituting these equivalent expres-

sions into the original problem, you have limx→ 5 −



25 −x^2
x− 5
= limx→ 5 −


(5−x)(5+x)

(5−x)(5−x)

=


−limx→ 5 −



(5−x)(5+x)
(5−x)(5−x)
=−limx→ 5 −


(5+x)
(5−x)

. The limit of the numerator is 10 and the limit


of the denominator is 0 through positive values. Thus, the lim
x→ 5 −



25 −x^2
x− 5

=−∞.

Free download pdf