5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book May 7, 2018 9:52

96 STEP 4. Review the Knowledge You Need to Score High


Replacing thexbelow


x^2 +3 with (−


x^2 ), you have limx→−∞
2 x+ 1

x^2 + 3

=xlim→−∞

2 x+ 1
√x
x^2 + 3


x^2

.


Thus, limx→−∞

2 +


1


x


1 +

3


x^2

=


x→lim−∞(2)−xlim→−∞

1


x



x→lim−∞(1)+x→lim−∞

(
3
x^2

) =

2


− 1


=− 2.


Verify your result with a calculator. (See Figure 6.2-6.)

[−4, 10] by [−4, 4]
Figure 6.2-6

TIP • Remember that ln

(
1
x

)
=ln (1)−lnx=−lnxandy=e−x=

1


ex

.


Horizontal and Vertical Asymptotes
A liney=bis called ahorizontal asymptotefor the graph of a functionfif either limx→∞f(x)=
bor limx→−∞f(x)=b.
A linex=ais called avertical asymptotefor the graph of a function fif either limx→a+f(x)=
+∞or limx→a− f(x)=+∞.

Example 1
Find the horizontal and vertical asymptotes of the functionf(x)=
3 x+ 5
x− 2

.


To find the horizontal asymptotes, examine the limx→∞f(x) and the limx→−∞f(x).

The limx→∞f(x)=xlim→∞
3 x+ 5
x− 2
=xlim→∞

3 +


5


x
1 −

2


x

=


3


1


=3, and the limx→−∞f(x)=xlim→−∞
3 x+ 5
x− 2

=


xlim→−∞

3 +


5


x
1 −

2


x

=


3


1


=3.


Thus,y=3 is a horizontal asymptote.
Free download pdf