5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book May 7, 2018 9:52

Limits and Continuity 103


  1. Find the vertical and horizontal asymptotes off(x)=


1


x^2 − 25

.


Answer: The vertical asymptotes arex=±5, and the horizontal asymptote isy=0,
since lim
x→±∞

f(x)=0.

6.5 Practice Problems


Part A The use of a calculator is not allowed.

Find the limits of the following:


  1. limx→ 0 (x−5) cosx

  2. Ifb=0, evaluate lim
    x→b


x^3 −b^3
x^6 −b^6

.



  1. limx→ 0


2 −



4 −x
x


  1. limx→∞
    5 − 6 x
    2 x+ 11

  2. limx→−∞
    x^2 + 2 x− 3
    x^3 + 2 x^2

  3. limx→∞
    3 x^2
    5 x+ 8

  4. limx→−∞
    3 x

    x^2 − 4

  5. Iff(x)=


{
ex for 0≤x< 1
x^2 ex for 1 ≤x≤ 5

,


find limx→ 1 f(x).


  1. limx→∞
    ex
    1 −x^3

  2. limx→ 0
    sin 3x
    sin 4x

  3. limx→ 3 +



t^2 − 9
t− 3


  1. The graph of a functionf is shown in
    Figure 6.5-1.
    Which of the following statements is/are
    true?
    I. limx→ 4 −f(x)= 5.
    II. lim
    x→ 4
    f(x)= 2.
    III. x=4 is not in the domain of f.


8 7 6 5 4 3 2 1

0123456789

y

x

f

Figure 6.5-1
Part B Calculators are allowed.


  1. Find the horizontal and vertical asymptotes
    of the graph of the function
    f(x)=


1


x^2 +x− 2

.



  1. Find the limit: lim
    x→ 5 +


5 +[x]
5 −x
when [x]isthe
greatest integer ofx.


  1. Find allx-values where the function
    f(x)=
    x+ 1
    x^2 + 4 x− 12
    is discontinuous.

  2. For what value ofkis the function


g(x)=

{
x^2 +5, x≤ 3
2 x−k, x> 3
continuous at
x=3?


  1. Determine if


f(x)=




x^2 + 5 x− 14
x− 2
,ifx= 2
12, ifx= 2
is continuous atx=2. Explain why or why not.
Free download pdf