MA 3972-MA-Book May 7, 2018 9:52Limits and Continuity 103- Find the vertical and horizontal asymptotes off(x)=
1
x^2 − 25.
Answer: The vertical asymptotes arex=±5, and the horizontal asymptote isy=0,
since lim
x→±∞f(x)=0.6.5 Practice Problems
Part A The use of a calculator is not allowed.Find the limits of the following:- limx→ 0 (x−5) cosx
- Ifb=0, evaluate lim
x→b
x^3 −b^3
x^6 −b^6.
- limx→ 0
2 −
√
4 −x
x- limx→∞
5 − 6 x
2 x+ 11 - limx→−∞
x^2 + 2 x− 3
x^3 + 2 x^2 - limx→∞
3 x^2
5 x+ 8 - limx→−∞
3 x
√
x^2 − 4 - Iff(x)=
{
ex for 0≤x< 1
x^2 ex for 1 ≤x≤ 5,
find limx→ 1 f(x).- limx→∞
ex
1 −x^3 - limx→ 0
sin 3x
sin 4x - limx→ 3 +
√
t^2 − 9
t− 3- The graph of a functionf is shown in
Figure 6.5-1.
Which of the following statements is/are
true?
I. limx→ 4 −f(x)= 5.
II. lim
x→ 4
f(x)= 2.
III. x=4 is not in the domain of f.
8 7 6 5 4 3 2 10123456789yxfFigure 6.5-1
Part B Calculators are allowed.- Find the horizontal and vertical asymptotes
of the graph of the function
f(x)=
1
x^2 +x− 2.
- Find the limit: lim
x→ 5 +
5 +[x]
5 −x
when [x]isthe
greatest integer ofx.- Find allx-values where the function
f(x)=
x+ 1
x^2 + 4 x− 12
is discontinuous. - For what value ofkis the function
g(x)={
x^2 +5, x≤ 3
2 x−k, x> 3
continuous at
x=3?- Determine if
f(x)=⎧
⎨
⎩x^2 + 5 x− 14
x− 2
,ifx= 2
12, ifx= 2
is continuous atx=2. Explain why or why not.