MA 3972-MA-Book May 9, 2018 10:9
Differentiation 113
TIP • Always write out all formulas in your solutions.
Power Rule
Iff(x)=cwherecis a constant, then f′(x)=0.
Iff(x)=xnwherenis a real number, thenf′(x)=nxn−^1.
Iff(x)=cxnwherecis a constant andnis a real number, then f′(x)=cnxn−^1.
Summary of Derivatives of Algebraic Functions
d
dx
(c)=0,
d
dx
(xn)=nxn−^1 , and
d
dx
(cxn)=cnxn−^1
Example 1
Iff(x)= 2 x^3 , find (a)f′(x), (b) f′(1), and (c) f′(0).
Note that (a)f′(x)= 6 x^2 , (b)f′(1)=6(1)^2 =6, and (c)f′(0)=0.
Example 2
Ify=
1
x^2
, find (a)
dy
dx
and (b)
dy
dx
|x= 0 (which represents
dy
dx
atx=0).
Note that (a)y=
1
x^2
=x−^2 and thus,
dy
dx
=− 2 x−^3 =
− 2
x^3
and (b)
dy
dx
|x= 0 does not exist because
the expression
− 2
0
is undefined.
Example 3
Here are several examples of algebraic functions and their derivatives:
DERIVATIVE WITH
FUNCTION WRITTEN INcxnFORM DERIVATIVE POSITIVE EXPONENTS
3 x 3 x^13 x^0 = 33
− 5 x^7 − 5 x^7 − 35 x^6 − 35 x^6
8
√
x 8 x
(^12)
4 x−
(^124)
x
12 or
4
√
x
1
x^2
x−^2 − 2 x−^3
− 2
x^3
− 2
√
x
− 2
x
12 =−^2 x
−^12 x−^321
x
32 or
1
√
x^3
44 x^000
π^2 (π^2 )x^000