MA 3972-MA-Book May 9, 2018 10:9
Differentiation 117
Example 2
Findf′(x)iff(x)=cot(4x−6).
Using the chain rule, letu= 4 x−6. Then f′(x)=[−csc^2 (4x−6)][4]=−4 csc^2 (4x−6).
Or using your calculator, enterd(1/tan(4x−6), x) and obtain
− 4
sin^2 (4x−6)
, which is an
equivalent form.
Example 3
Findf′(x)iff(x)=8 sin(x^2 ).
Using the chain rule, letu=x^2. Thenf′(x)=[8 cos(x^2 )][2x]= 16 xcos(x^2 ).
Example 4
Ify=sinxcos(2x), find
dy
dx
.
Using the product rule, letu=sinxandv=cos(2x).
Then
dy
dx
=cosxcos(2x)+−sin(2x)(sinx)=cosxcos(2x)−2 sinxsin(2x).
Example 5
Ify=sin[cos(2x)], find
dy
dx
.
Using the chain rule, letu=cos(2x). Then
dy
dx
=
dy
du
·
du
dx
=cos[cos(2x)]
d
dx
[cos(2x)].
To evaluate
d
dx
[cos(2x)], use the chain rule again by making anotheru-substitution,
this time for 2x. Thus,
d
dx
[cos(2x)]=[−sin(2x)]2=−2 sin(2x). Therefore,
dy
dx
cos[cos(2x)](−2 sin(2x))=−2 sin(2x) cos[cos(2x)].
Example 6
Findf′(x)iff(x)= 5 xcscx.
Using the product rule, letu= 5 xandv=cscx. Then f′(x)=5 cscx+(−cscxcotx)
(5x)=5 cscx− 5 x(cscx)(cotx).
Example 7
Ify=
√
sinx, find
dy
dx
.
Rewritey=
√
sinx as y =(sinx)^1 /^2. Using the chain rule, letu=sinx. Thus,
dy
dx
=
1
2
(sinx)−^1 /^2 (cosx)=
cosx
2(sinx)^1 /^2
=
cosx
2
√
sinx