MA 3972-MA-Book May 9, 2018 10:9
118 STEP 4. Review the Knowledge You Need to Score High
Example 8
Ify=
tanx
1 +tanx
, find
dy
dx
.
Using the quotient rule, letu=tanxandv=(1+tanx). Then,
dy
dx
=
(sec^2 x)(1+tanx)−(sec^2 x)(tanx)
(1+tanx)^2
=
sec^2 x+(sec^2 x)(tanx)−(sec^2 x)(tanx)
(1+tanx)^2
=
sec^2 x
(1+tanx)^2
, which is equivalent to
1
(cosx)^2
1 +
(
sinx
cosx
) 2
=
1
(cosx)^2
(
cosx+sinx
cosx
) 2 =
1
(cosx+sinx)^2
.
Note that for all of the above exercises, you can find the derivatives by using a calculator,
provided that you are permitted to do so.
Derivatives of Inverse Trigonometric Functions
Summary of Derivatives of Inverse Trigonometric Functions
Letube a differentiable function ofx, then
d
dx
sin−^1 u=
1
√
1 −u^2
du
dx
, |u|< 1
d
dx
cos−^1 u=
− 1
√
1 −u^2
du
dx
,|u|< 1
d
dx
tan−^1 u=
1
1 +u^2
du
dx
d
dx
cot−^1 u=
− 1
1 +u^2
du
dx
d
dx
sec−^1 u=
1
|u|
√
u^2 − 1
du
dx
, |u|> 1
d
dx
csc−^1 u=
− 1
|u|
√
u^2 − 1
du
dx
, |u|> 1.
Note that the derivatives of cos−^1 x, cot−^1 x, and csc−^1 xall have a “−1” in their numerators.
Example 1
Ify=5 sin−^1 (3x), find
dy
dx
.
Letu= 3 x. Then
dy
dx
=(5)
1
√
1 −(3x)^2
du
dx
=
5
√
1 −(3x)^2
(3)=
15
√
1 − 9 x^2
.
Or using a calculator, enterd[5 sin−^1 (3x), x] and obtain the same result.