5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book May 9, 2018 10:9

Differentiation 119

Example 2
Findf′(x)iff(x)=tan−^1


x.

Letu=


x.Then f′(x)=

1


1 +(



x)^2

du
dx

=


1


1 +x

(
1
2
x−

(^12)
)


1


1 +x

(
1
2


x

)

=


1


2



x(1+x)

.


Example 3
Ify=sec−^1 (3x^2 ), find
dy
dx

.


Letu= 3 x^2. Then
dy
dx

=


1


| 3 x^2 |


(3x^2 )^2 − 1

du
dx

=


1


3 x^2


9 x^4 − 1

(6x)=

2


x


9 x^4 − 1

.


Example 4
Ify=cos−^1

(
1
x

)
, find
dy
dx

.


Letu=

(
1
x

)

. Then
dy
dx


=


− 1



1 −

(
1
x

) 2

du
dx

.


Rewriteu=

(
1
x

)
asu=x−^1. Then
du
dx
=− 1 x−^2 =

− 1


x^2

.


Therefore,
dy
dx


=


− 1



1 −

(
1
x

) 2

du
dx

=


− 1



1 −

(
1
x

) 2

− 1


x^2

=


1



x^2 − 1
x^2
(x^2 )

=


1



x^2 − 1
|x|
(x^2 )

=


1


|x|


x^2 − 1

.


Note that for all of the above exercises, you can find the derivatives by using a calculator,
provided that you are permitted to do so.

Derivatives of Exponential and Logarithmic Functions
Summary of Derivatives of Exponential and Logarithmic Functions
Letube a differentiable function ofx, then
d
dx
(eu)=eu
du
dx

d
dx
(au) =aulna
du
dx
, a>0&a= 1

d
dx
(lnu)=

1


u

du
dx
, u> 0
d
dx
(logau)=

1


ulna

du
dx
, a>0&a= 1.

For the following examples, find
dy
dx
and verify your result with a calculator.
Free download pdf