MA 3972-MA-Book May 9, 2018 10:9
Differentiation 119
Example 2
Findf′(x)iff(x)=tan−^1
√
x.
Letu=
√
x.Then f′(x)=
1
1 +(
√
x)^2
du
dx
=
1
1 +x
(
1
2
x−
(^12)
)
1
1 +x
(
1
2
√
x
)
=
1
2
√
x(1+x)
.
Example 3
Ify=sec−^1 (3x^2 ), find
dy
dx
.
Letu= 3 x^2. Then
dy
dx
=
1
| 3 x^2 |
√
(3x^2 )^2 − 1
du
dx
=
1
3 x^2
√
9 x^4 − 1
(6x)=
2
x
√
9 x^4 − 1
.
Example 4
Ify=cos−^1
(
1
x
)
, find
dy
dx
.
Letu=
(
1
x
)
. Then
dy
dx
=
− 1
√
1 −
(
1
x
) 2
du
dx
.
Rewriteu=
(
1
x
)
asu=x−^1. Then
du
dx
=− 1 x−^2 =
− 1
x^2
.
Therefore,
dy
dx
=
− 1
√
1 −
(
1
x
) 2
du
dx
=
− 1
√
1 −
(
1
x
) 2
− 1
x^2
=
1
√
x^2 − 1
x^2
(x^2 )
=
1
√
x^2 − 1
|x|
(x^2 )
=
1
|x|
√
x^2 − 1
.
Note that for all of the above exercises, you can find the derivatives by using a calculator,
provided that you are permitted to do so.
Derivatives of Exponential and Logarithmic Functions
Summary of Derivatives of Exponential and Logarithmic Functions
Letube a differentiable function ofx, then
d
dx
(eu)=eu
du
dx
d
dx
(au) =aulna
du
dx
, a>0&a= 1
d
dx
(lnu)=
1
u
du
dx
, u> 0
d
dx
(logau)=
1
ulna
du
dx
, a>0&a= 1.
For the following examples, find
dy
dx
and verify your result with a calculator.