MA 3972-MA-Book May 9, 2018 10:9
122 STEP 4. Review the Knowledge You Need to Score High
Example 1
Find
dy
dx
ify^2 − 7 y+x^2 − 4 x=10.
Step 1: Differentiate each term of the equation with respect tox. (Note thatyis treated as
a function ofx.) 2y
dy
dx
− 7
dy
dx
+ 2 x− 4 = 0
Step 2: Move all terms containing
dy
dx
to the left side of the equation and all other terms
to the right side: 2y
dy
dx
− 7
dy
dx
=− 2 x+4.
Step 3: Factor out
dy
dx
:
dy
dx
(2y−7)=− 2 x+ 4.
Step 4: Solve for
dy
dx
:
dy
dx
=
− 2 x+ 4
(2y−7)
.
Example 2
Find
dy
dx
ifx^3 +y^3 = 6 xy.
Step 1: Differentiate each term with respect tox:3x^2 + 3 y^2
dy
dx
=(6)y+
(
dy
dx
)
(6x).
Step 2: Move all
dy
dx
terms to the left side: 3y^2
dy
dx
− 6 x
dy
dx
= 6 y− 3 x^2.
Step 3: Factor out
dy
dx
:
dy
dx
(3y^2 − 6 x)= 6 y− 3 x^2.
Step 4: Solve for
dy
dx
:
dy
dx
=
6 y− 3 x^2
3 y^2 − 6 x
=
2 y−x^2
y^2 − 2 x
.
Example 3
Find
dy
dx
if (x+y)^2 −(x−y)^2 =x^5 +y^5.
Step 1: Differentiate each term with respect tox:
2(x+y)
(
1 +
dy
dx
)
−2(x−y)
(
1 −
dy
dx
)
= 5 x^4 + 5 y^4
dy
dx
.
Distributing 2(x+y) and −2(x−y), you have
2(x+y)+2(x+y)
dy
dx
−2(x−y)+2(x−y)
dy
dx
= 5 x^4 + 5 y^4
dy
dx
.
Step 2: Move all
dy
dx
terms to the left side:
2(x+y)
dy
dx
+2(x−y)
dy
dx
− 5 y^4
dy
dx
= 5 x^4 −2(x+y)+2(x−y).