MA 3972-MA-Book May 9, 2018 10:9122 STEP 4. Review the Knowledge You Need to Score High
Example 1Find
dy
dxify^2 − 7 y+x^2 − 4 x=10.Step 1: Differentiate each term of the equation with respect tox. (Note thatyis treated as
a function ofx.) 2y
dy
dx− 7
dy
dx
+ 2 x− 4 = 0Step 2: Move all terms containing
dy
dx
to the left side of the equation and all other termsto the right side: 2y
dy
dx− 7
dy
dx
=− 2 x+4.Step 3: Factor out
dy
dx:
dy
dx
(2y−7)=− 2 x+ 4.Step 4: Solve for
dy
dx:
dy
dx=
− 2 x+ 4
(2y−7).
Example 2Find
dy
dxifx^3 +y^3 = 6 xy.Step 1: Differentiate each term with respect tox:3x^2 + 3 y^2
dy
dx
=(6)y+(
dy
dx)
(6x).Step 2: Move all
dy
dx
terms to the left side: 3y^2
dy
dx
− 6 x
dy
dx
= 6 y− 3 x^2.Step 3: Factor out
dy
dx:
dy
dx
(3y^2 − 6 x)= 6 y− 3 x^2.Step 4: Solve for
dy
dx:
dy
dx=
6 y− 3 x^2
3 y^2 − 6 x=
2 y−x^2
y^2 − 2 x.
Example 3Find
dy
dxif (x+y)^2 −(x−y)^2 =x^5 +y^5.Step 1: Differentiate each term with respect tox:2(x+y)(
1 +
dy
dx)
−2(x−y)(
1 −
dy
dx)
= 5 x^4 + 5 y^4
dy
dx.
Distributing 2(x+y) and −2(x−y), you have2(x+y)+2(x+y)
dy
dx
−2(x−y)+2(x−y)
dy
dx
= 5 x^4 + 5 y^4
dy
dx.
Step 2: Move all
dy
dx
terms to the left side:2(x+y)
dy
dx
+2(x−y)
dy
dx
− 5 y^4
dy
dx
= 5 x^4 −2(x+y)+2(x−y).