MA 3972-MA-Book May 9, 2018 10:9
Differentiation 123
Step 3: Factor out
dy
dx
:
dy
dx
[2(x+y)+2(x−y)− 5 y^4 ]= 5 x^4 − 2 x− 2 y+ 2 x− 2 y
dy
dx
[2x+ 2 y+ 2 x− 2 y− 5 y^4 ]= 5 x^4 − 4 y
dy
dx
[4x− 5 y^4 ]= 5 x^4 − 4 y.
Step 4: Solve for
dy
dx
:
dy
dx
=
5 x^4 − 4 y
4 x− 5 y^4
.
Example 4
Write an equation of the tangent to the curvex^2 +y^2 + 19 = 2 x+ 12 yat (4, 3).
The slope of the tangent to the curve at (4, 3) is equivalent to the derivative
dy
dx
at (4, 3).
Using implicit differentiation, you have:
2 x+ 2 y
dy
dx
= 2 + 12
dy
dx
2 y
dy
dx
− 12
dy
dx
= 2 − 2 x
dy
dx
(2y−12)= 2 − 2 x
dy
dx
=
2 − 2 x
2 y− 12
=
1 −x
y− 6
and
dy
dx
∣∣
∣
∣(4, 3)=
1 − 4
3 − 6
= 1.
Thus, the equation of the tangent isy− 3 =(1)(x−4) ory− 3 =x−4.
Example 5
Find
dy
dx
, if sin(x+y)= 2 x.
cos(x+y)
(
1 +
dy
dx
)
= 2
1 +
dy
dx
=
2
cos(x+y)
dy
dx
=
2
cos(x+y)