5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1

MA 3972-MA-Book May 9, 2018 10:9


Differentiation 123

Step 3: Factor out
dy
dx


:


dy
dx

[2(x+y)+2(x−y)− 5 y^4 ]= 5 x^4 − 2 x− 2 y+ 2 x− 2 y

dy
dx

[2x+ 2 y+ 2 x− 2 y− 5 y^4 ]= 5 x^4 − 4 y

dy
dx

[4x− 5 y^4 ]= 5 x^4 − 4 y.

Step 4: Solve for
dy
dx


:


dy
dx

=


5 x^4 − 4 y
4 x− 5 y^4

.


Example 4


Write an equation of the tangent to the curvex^2 +y^2 + 19 = 2 x+ 12 yat (4, 3).
The slope of the tangent to the curve at (4, 3) is equivalent to the derivative
dy
dx
at (4, 3).


Using implicit differentiation, you have:


2 x+ 2 y
dy
dx

= 2 + 12


dy
dx

2 y
dy
dx


− 12


dy
dx
= 2 − 2 x

dy
dx
(2y−12)= 2 − 2 x

dy
dx

=


2 − 2 x
2 y− 12

=


1 −x
y− 6
and
dy
dx

∣∣

∣(4, 3)=

1 − 4


3 − 6


= 1.


Thus, the equation of the tangent isy− 3 =(1)(x−4) ory− 3 =x−4.


Example 5


Find
dy
dx
, if sin(x+y)= 2 x.


cos(x+y)


(
1 +
dy
dx

)
= 2

1 +


dy
dx

=


2


cos(x+y)
dy
dx

=


2


cos(x+y)

− 1

Free download pdf