5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book May 9, 2018 10:9

126 STEP 4. Review the Knowledge You Need to Score High


[–2, 4] by [–2, 4]
Figure 7.4-2

TIP • Remember that the lim
x→ 0

sin 6x
sin 2x

=


6


2


=3 because the limx→ 0
sinx
x

=1.


7.5 Derivatives of Inverse Functions


Let f be a one-to-one differentiable function with inverse function f−^1 .If
f′(f−^1 (a))=0, then the inverse function f−^1 is differentiable ata and (f−^1 )′(a)=
1
f′(f−^1 (a))

. (See Figure 7.5-1.)


f′ (f–^1 (a))

1

(a, f–^1 (a))

y

0 x

y = x

f

f–^1

(f–^1 (a), a)
m = (f–^1 )′(a)

m = f′(f–^1 (a))
(f–^1 )′^ (a) =
Figure 7.5-1

Ify=f−^1 (x) so thatx=f(y), then
dy
dx

=


1


dx/dy
with
dx
dy

=0.


Example 1
Iff(x)=x^3 + 2 x−10, find (f−^1 )′(x).

Step 1: Check if (f−^1 )′(x) exists. f′(x)= 3 x^2 +2 and f′(x)>0 for all real values ofx.
Thus, f(x) is strictly increasing which implies that f(x)is1−1. Therefore,
(f−^1 )′(x) exists.
Step 2: Lety=f(x) and thusy=x^3 + 2 x−10.
Step 3: Interchangexandyto obtain the inverse functionx=y^3 + 2 y−10.
Step 4: Differentiate with respect toy:
dx
dy

= 3 y^2 + 2.

Step 5: Apply formula
dy
dx

=


1


dx/dy

.


dy
dx

=


1


dx/dy

=


1


3 y^2 + 2

.Thus, (f−^1 )′(x)=

1


3 y^2 + 2

.

Free download pdf