5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book May 9, 2018 10:9

130 STEP 4. Review the Knowledge You Need to Score High



  1. Findf′(x)iff(x)=ln(3x).
    Answer: f′(x)=


1


3 x

(3)=


1


x

.



  1. Find the approximate value off′(3). (See Figure 7.8-1.)


y

x

f

(4, 3)

(2, 1)
0

Figure 7.8-1

Answer: Using the slope of the line segment joining (2, 1) and (4, 3),f′(3)=

3 − 1


4 − 2


=1.



  1. Find
    dy
    dx


ifxy= 5 x^2.

Answer: Using implicit differentiation, 1y+x
dy
dx
= 10 x. Thus,
dy
dx

=


10 x−y
x

.


Or simply solve foryleading toy= 5 xand thus,
dy
dx

= 5.



  1. Ify=


5


x^2
, find
d^2 y
dx^2

.


Answer: Rewritey= 5 x−^2. Then,
dy
dx

=− 10 x−^3 and
d^2 y
dx^2

= 30 x−^4 =

30


x^4

.



  1. Using a calculator, write an equation of the line tangent to the graphf(x)=− 2 x^4 at
    the point wheref′(x)=−1.
    Answer: f′(x)=− 8 x^3. Using a calculator, enter [Solve][− 8 x∧ 3 =−1,x] and
    obtainx=


1


2


⇒ f′

(
1
2

)
=−1. Using the calculatorf

(
1
2

)
=−

1


8


. Thus,


tangent isy+

1


8


=− 1


(
x−

1


2


)
.


  1. limx→ 2
    x^2 +x− 6
    x^2 − 4


Answer: Since
x^2 +x− 6
x^2 − 4


0


0


, consider limx→ 2
2 x+ 1
2 x

=


5


4


.



  1. limx→∞
    lnx
    x
    Answer: Since
    lnx
    x





, consider limx→∞
1 /x
1

=xlim→∞

1


x

=0.

Free download pdf