MA 3972-MA-Book May 9, 2018 10:9
132 STEP 4. Review the Knowledge You Need to Score High
7.10 Cumulative Review Problems
(Calculator) indicates that calculators are
permitted.
- Find lim
h→ 0
sin
(
π
2
+h
)
−sin
(
π
2
)
h
.
- Iff(x)=cos^2 (π−x), findf′(0).
- Find limx→∞
x− 25
10 +x− 2 x^2
.
- (Calculator) Letfbe a continuous and
differentiable function. Selected values of
fare shown below. Find the approximate
value off′atx=2.
x 0 1 2 3 4 5
f 3.9 4 4.8 6.5 8.9 11.8
- (Calculator) Iff(x)=
⎧
⎨
⎩
x^2 − 9
x− 3
, x=3,
3, x= 3
determine iff(x) is continuous at (x=3).
Explain why or why not.
7.11 Solutions to Practice Problems
Part A The use of a calculator is not
allowed.
- Applying the power rule,
dy
dx
= 30 x^4 −1. - Rewritef(x)=
1
x
+
1
√ (^3) x 2 as
f(x)=x−^1 +x−^2 /^3. Differentiate:
f′(x)=−x−^2 −
2
3
x−^5 /^3 =−
1
x^2
−
2
33
√
x^5
.
- Rewrite
y=
5 x^6 − 1
x^2
asy=
5 x^6
x^2
−
1
x^2
= 5 x^4 −x−^2.
Differentiate:
dy
dx
= 20 x^3 −(−2)x−^3 = 20 x^3 +
2
x^3
.
An alternate method is to differentiate
y=
5 x^6 − 1
x^2
directly, using the quotient rule.
- Applying the quotient rule,
dy
dx
=
(2x)(5x^6 −1)−(30x^5 )(x^2 )
(5x^6 −1)^2
=
10 x^7 − 2 x− 30 x^7
(5x^6 −1)^2
=
− 20 x^7 − 2 x
(5x^6 −1)^2
=
− 2 x(10x^6 +1)
(5x^6 −1)^2
.
- Applying the product rule,u=(3x−2)^5
andv=(x^2 −1), and then the chain rule,
f′(x)=[5(3x−2)^4 (3)][x^2 −1]+[2x]
×[(3x−2)^5 ]
=15(x^2 −1)(3x−2)^4 + 2 x(3x−2)^5
=(3x−2)^4 [15(x^2 −1)+ 2 x(3x−2)]
=(3x−2)^4 [15x^2 − 15 + 6 x^2 − 4 x]
=(3x−2)^4 (21x^2 − 4 x−15).