MA 3972-MA-Book May 9, 2018 10:9
136 STEP 4. Review the Knowledge You Need to Score High
=lim
h→ 0
sin
(
π
2
)
[cosh−1]+cos
(
π
2
)
sinh
h
=limh→ 0 sin
(
π
2
)(
cosh− 1
h
)
−lim
h→ 0
cos
(
π
2
)(
sinh
h
)
=sin
(
π
2
)
hlim→ 0
(
cosh− 1
h
)
−cos
(
π
2
)
lim
h→ 0
(
sinh
h
)
=
[
sin
(
π
2
)]
0 +cos
(
π
2
)
(1)
=cos
(
π
2
)
= 0.
- Using the chain rule, letu=(π−x).
Then, f′(x)=2 cos(π−x)−sin(π−x)
=2 cos(π−x) sin(π−x)
f′(0)=2 cosπsinπ= 0. - Since the degree of the polynomial in the
denominator is greater than the degree of
the polynomial in the numerator, the limit
is 0. - You can use the difference quotient
f(a+h)−f(a)
h
to approximate f′(a).
Leth=1; f′(2)≈
f(3)−f(2)
3 − 2
≈
6. 5 − 4. 8
1
≈ 1. 7.
Leth=2; f′(2)≈
f(4)− f(2)
4 − 2
≈
8. 9 − 4. 8
2
≈ 2. 05.
Or, you can use the symmetric difference
quotient
f(a+h)−f(a−h)
2 h
to
approximate f′(a).
Leth=1; f′(2)≈
f(3)− f(1)
3 − 1
≈
6. 5 − 4
2
≈ 1. 25.
Leth=2; f′(2)≈
f(4)− f(0)
4 − 0
≈
8. 9 − 3. 9
4
≈ 1. 25.
Thus,f′(2)= 1 .7, 2.05, or 1.25
depending on your method.
- (See Figure 7.12-1.) Checking the three
conditions of continuity:
[–10, 10] by [–10, 10]
Figure 7.12-1
(1) f(3)= 3
(2) lim
x→ 3
x^2 − 9
x− 3
=lim
x→ 3
(
(x+3)(x−3)
(x−3)
)
=lim
x→ 3
(x+3)=(3)+ 3 = 6
(3) Since f(3)=lim
x→ 3
f(x), f(x)is
discontinuous atx=3.