MA 3972-MA-Book April 11, 2018 17:21
Graphs of Functions and Derivatives 161
(–4, 6)
(3, 2)
f(x)
y
x
- 42 – 3 – 2 – 1 10 3
Figure 8.4-5
Example 5
Iff(x)=
∣∣
ln(x+1)
∣∣
, find lim
x→ 0 −
f′(x). (See Figure 8.4-6.)
[–2, 5] by [–2, 4]
Figure 8.4-6
The domain offis (−1,∞).
f(0)=
∣∣
ln(0+1)
∣∣
=
∣∣
ln(1)
∣∣
= 0
f(x)=
∣∣
ln(x+1)
∣∣
=
{
ln(x+1) ifx≥ 0
−ln(x+1) ifx< 0
Thus,f′(x)=
⎧
⎪⎪⎨
⎪⎪⎩
1
x+ 1
ifx≥ 0
−
1
x+ 1
ifx< 0
Therefore, lim
x→ 0 −
f′(x)=lim
x→ 0 −
(
−
1
x+ 1
)
=−1.