MA 3972-MA-Book April 11, 2018 17:21
170 STEP 4. Review the Knowledge You Need to Score High
Table 8.8-1
INTERVALS X= 0 (0,
√
1 /6) X=
√
1 /6(
√
1 /6,
√
1 /2) X=
√
1 /2(
√
1 /2,∞)
f(x)0 − 5 / 36 − 1 / 4
f′(x)0−− − 0 +
f′′(x) −− 0 +++
conclusion rel. max. decr. decr. decr. rel. min. incr.
concave pt. of concave concave
downward inflection upward upward
Step 7: Sketch the graph.
(See Figure 8.8-3.)
x
y
f
rel. max
(0, 0)
Abs. min Abs. min
pt of
infl.
( )––^12 ,^14 ( )––^12 ,^14
( )–– 61 , 365 ( )– 61 ,– 365
pt of
infl.
Figure 8.8-3
- Step 1: Domain: all real numbersx=4.
Step 2: Symmetry: none.
Step 3: Findf′and f′′.
f′(x)=
( 1 )(x− 4 )−( 1 )(x+ 4 )
(x− 4 )^2
=
− 8
(x− 4 )^2
, f′′(x)=
16
(x− 4 )^3
Step 4: Find the critical numbers:
f′(x)=0 and
f′(x) is undefined atx=4.
Step 5: Determine the intervals.
4
Intervals are (−∞, 4) and (4,∞).
Step 6: Set up a table as below:
INTERVALS (−∞, 4) (4,∞)
f′ −−
f′′ −+
conclusion decr. concave incr. concave
downward upward
Step 7: Horizontal asymptote:
lim
x→±∞
x+ 4
x− 4
=1. Thus,y=1isa
horizontal asymptote.
Vertical asymptote:
lim
x→ 4 +
x+ 4
x− 4
=∞and
xlim→ 4 −
x+ 4
x− 4
=−∞; Thus,x=4isa
vertical asymptote.
Step 8: Determine the intercepts:
x-intercept: Set f′(x)= 0
⇒x+ 4 =0;x=−4.
y-intercept: Setx= 0
⇒f(x)=−1.