MA 3972-MA-Book April 11, 2018 17:21
174 STEP 4. Review the Knowledge You Need to Score High
(e) function is concave upward on
intervals (0, 0.491),
(
π
2
,2. 651
)
,
(
3 .632,
3 π
2
)
, and (5.792, 2π), and
concave downward on the intervals(
0 .491,
π
2
)
, (2.651, 3.632), and
(
3 π
2
,5. 792
)
.
8.9 Solutions to Cumulative Review Problems
- (x^2 +y^2 )^2 = 10 xy
2
(
x^2 +y^2
)(
2 x+ 2 y
dy
dx
)
= 10 y+( 10 x)
dy
dx
4 x
(
x^2 +y^2
)
+ 4 y
(
x^2 +y^2
)dy
dx
= 10 y+( 10 x)
dy
dx
4 y
(
x^2 +y^2
)dy
dx
−( 10 x)
dy
dx
= 10 y− 4 x
(
x^2 +y^2
)
dy
dx
(
4 y
(
x^2 +y^2
)
− 10 x
)
= 10 y− 4 x
(
x^2 +y^2
)
dy
dx
=
10 y− 4 x
(
x^2 +y^2
)
4 y(x^2 +y^2 )− 10 x
=
5 y− 2 x
(
x^2 +y^2
)
2 y(x^2 +y^2 )− 5 x
- Substituting√ x=0 in the expression
x+ 9 − 3
x
leads to
0
0
, an indeterminant
form. ApplyL'Hôpital’sRule and you have
lim
x→ 0
1
2 (x+9)
−^12 (1)
1
,or
1
2
(0+9)−
(^12)
1
6
.
Alternatively,
limx→ 0
√
x+ 9 − 3
x
=
limx→ 0
(√
x+ 9 − 3
)
x
·
(√
x+ 9 + 3
)
(√
x+ 9 + 3
)
=limx→ 0
(x+9)− 9
x
(√
x+ 9 + 3
)
=limx→ 0
x
x
(√
x+ 9 + 3
)
=limx→ 0
1
√
x+ 9 + 3
=
1
√
0 + 9 + 3
=
1
3 + 3
=
1
6
- y =cos(2x)+ 3 x^2 − 1
dy
dx
=−sin(2x)+ 6 x=
−2 sin(2x)+ 6 x
d^2 y
dx^2
=−2(cos(2x))(2)+ 6 =
−4 cos(2x)+ 6 - (Calculator) The functionf is continuous
everywhere for all values ofkexcept
possibly atx=1. Checking with the three
conditions of continuity atx=1:
(1) f(1)=(1)^2 − 1 = 0
(2) lim
x→ 1 +
(2x+k)= 2 +k, lim
x→ 1 −
(
x^2 − 1
)
=0;
thus, 2+k= 0 ⇒k=−2. Since
lim
x→ 1 +
f(x)=lim
x→ 1 −
f(x)=0, therefore,
lim
x→ 1
f(x)=0.
(3) f(1)=lim
x→ 1
f(x)=0. Thus,k=−2.
- (a) Since f′>0on(−1, 0) and (0, 2),
the functionfis increasing on the
intervals [−1, 0] and [0, 2]. Since
f′<0 on (2, 4), f is decreasing on
[2, 4].