5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 17:21

174 STEP 4. Review the Knowledge You Need to Score High


(e) function is concave upward on
intervals (0, 0.491),

(
π
2

,2. 651


)
,
(
3 .632,
3 π
2

)
, and (5.792, 2π), and

concave downward on the intervals(
0 .491,
π
2

)
, (2.651, 3.632), and
(
3 π
2

,5. 792


)
.

8.9 Solutions to Cumulative Review Problems



  1. (x^2 +y^2 )^2 = 10 xy


2

(
x^2 +y^2

)(
2 x+ 2 y
dy
dx

)

= 10 y+( 10 x)
dy
dx
4 x

(
x^2 +y^2

)
+ 4 y

(
x^2 +y^2

)dy
dx
= 10 y+( 10 x)
dy
dx
4 y

(
x^2 +y^2

)dy
dx
−( 10 x)
dy
dx
= 10 y− 4 x

(
x^2 +y^2

)

dy
dx

(
4 y

(
x^2 +y^2

)
− 10 x

)

= 10 y− 4 x

(
x^2 +y^2

)

dy
dx

=


10 y− 4 x

(
x^2 +y^2

)

4 y(x^2 +y^2 )− 10 x

=

5 y− 2 x

(
x^2 +y^2

)

2 y(x^2 +y^2 )− 5 x


  1. Substituting√ x=0 in the expression
    x+ 9 − 3
    x
    leads to


0


0


, an indeterminant
form. ApplyL'Hôpital’sRule and you have

lim
x→ 0

1
2 (x+9)

−^12 (1)


1


,or

1


2


(0+9)−


(^12)


1


6


.


Alternatively,

limx→ 0


x+ 9 − 3
x

=


limx→ 0

(√
x+ 9 − 3

)

x

·


(√
x+ 9 + 3

)
(√
x+ 9 + 3

)

=limx→ 0
(x+9)− 9
x

(√
x+ 9 + 3

)

=limx→ 0
x
x

(√
x+ 9 + 3

)

=limx→ 0

1



x+ 9 + 3

=


1



0 + 9 + 3

=

1


3 + 3


=


1


6



  1. y =cos(2x)+ 3 x^2 − 1
    dy
    dx
    =−sin(2x)+ 6 x=
    −2 sin(2x)+ 6 x
    d^2 y
    dx^2
    =−2(cos(2x))(2)+ 6 =
    −4 cos(2x)+ 6

  2. (Calculator) The functionf is continuous
    everywhere for all values ofkexcept
    possibly atx=1. Checking with the three
    conditions of continuity atx=1:


(1) f(1)=(1)^2 − 1 = 0
(2) lim
x→ 1 +

(2x+k)= 2 +k, lim
x→ 1 −

(
x^2 − 1

)
=0;
thus, 2+k= 0 ⇒k=−2. Since
lim
x→ 1 +

f(x)=lim
x→ 1 −

f(x)=0, therefore,
lim
x→ 1

f(x)=0.
(3) f(1)=lim
x→ 1

f(x)=0. Thus,k=−2.


  1. (a) Since f′>0on(−1, 0) and (0, 2),
    the functionfis increasing on the
    intervals [−1, 0] and [0, 2]. Since
    f′<0 on (2, 4), f is decreasing on
    [2, 4].

Free download pdf