5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 14:46

Applications of Derivatives 189


  1. Using your calculator, find the shortest distance between the point (4, 0) and the line
    y=x. (See Figure 9.3-1.)


[–6.3, 10] by [–2, 6]
Figure 9.3-1

Answer:
S=


(x−4)^2 +(y−0)^2 =


(x−4)^2 +x^2
Entery 1 =


(x−4)^2 +x^2 andy 2 =d(y 1 (x),x).
Use the [Zero] function fory 2 and obtainx=2. Note that whenx<2,y 2 <0, which
meansy 1 is decreasing and whenx>2,y 2 >0, which meansy 1 is increasing, and
thus atx=2,y 1 is a minimum. Use the [Value] function fory 1 atx=2 and obtain
y 1 = 2 .82843. Thus, the shortest distance is approximately 2.828.

9.4 Practice Problems


Part A The use of a calculator is not
allowed.


  1. A spherical balloon is being inflated. Find
    the volume of the balloon at the instant
    when the rate of increase of the surface area
    is eight times the rate of increase of the
    radius of the sphere.

  2. A 13-foot ladder is leaning against a wall. If
    the top of the ladder is sliding down the
    wall at 2 ft/sec, how fast is the bottom of
    the ladder moving away from the wall when
    the top of the ladder is 5 feet from the
    ground? (See Figure 9.4-1.)


13 ft

Wall

Ground
Figure 9.4-1


  1. Air is being pumped into a spherical balloon
    at the rate of 100 cm^3 /sec. How fast is the
    diameter increasing when the radius is 5 cm?

  2. A woman 5 feet tall is walking away from a
    streetlight hung 20 feet from the ground at
    the rate of 6 ft/sec. How fast is her shadow
    lengthening?

  3. A water tank in the shape of an inverted
    cone has a height of 18 feet and a base
    radius of 12 feet. If the tank is full and the
    water is drained at the rate of 4 ft^3 /min,
    how fast is the water level dropping when
    the water level is 6 feet high?

  4. Two cars leave an intersection at the same
    time. The first car is going due east at the
    rate of 40 mph and the second is going due
    south at the rate of 30 mph. How fast is the
    distance between the two cars increasing
    when the first car is 120 miles from the
    intersection?

  5. If the perimeter of an isosceles triangle is
    18 cm, find the maximum area of the
    triangle.

Free download pdf