MA 3972-MA-Book May 8, 2018 13:52
Integration 229
Differentiation Formulas (cont.): Integration Formulas (cont.):
10.
d
dx
(lnx)=
1
x
10.
∫
1
x
dx=ln|x|+C
11.
d
dx
(ex) =ex 11.
∫
exdx=ex+C
12.
d
dx
(ax) =(lna)ax 12.
∫
axdx=
ax
lna
+Ca>0,a= 1
13.
d
dx
(sin−^1 x)=
√^1
1 −x^2
13.
∫
√^1
1 −x^2
dx =sin−^1 x+C
14.
d
dx
(tan−^1 x)=
1
1 +x^2
14.
∫
1
1 +x^2
dx =tan−^1 x+C
15.
d
dx
(sec−^1 x)=
1
|x|
√
x^2 − 1
15.
∫
1
|x|
√
x^2 − 1
dx=sec−^1 x+C
More Integration Formulas:
16.
∫
tanxdx=ln|secx|+Cor −ln|cosx|+C
17.
∫
cotxdx=ln|sinx|+Cor −ln|cscx|+C
18.
∫
secxdx=ln|secx+tanx|+C
19.
∫
cscxdx=ln|cscx−cotx|+C
20.
∫
lnxdx=xln|x|−x+C
21.
∫
1
√
a^2 −x^2
dx =sin−^1
(x
a
)
+C
22.
∫
1
a^2 +x^2
dx =
1
a
tan−^1
(x
a
)
+C
23.
∫
1
x
√
x^2 −a^2
dx=
1
a
sec−^1
∣
∣∣x
a
∣
∣∣+Cor^1
a
cos−^1
∣
∣∣a
x
∣
∣∣+C
24.
∫
sin^2 xdx=
x
2
−
sin(2x)
4
+C.Note: sin^2 x=
1 −cos 2x
2
Note that after evaluating an integral, always check the result by taking the derivative of the
answer (i.e., taking the derivative of the antiderivative).
TIP • Remember that the volume of a right-circular cone isv=^1
3
πr^2 hwhereris the radius
of the base andhis the height of the cone.