MA 3972-MA-Book May 8, 2018 13:52
234 STEP 4. Review the Knowledge You Need to Score High
Example 1
Evaluate
∫
x(x+1)^10 dx.
Step 1: Letu=x+1; thenx=u−1.
Step 2: Differentiate:du=dx.
Step 3: Rewrite:
∫
(u− 1 )u^10 du=
∫ (
u^11 −u^10
)
du.
Step 4: Integrate:
u^12
12
−
u^11
11
+C.
Step 5: Replaceu:
(x+ 1 )^12
12
−
(x+ 1 )^11
11
+C.
Step 6: Differentiate and Check:
12 (x+ 1 )^11
12
−
11 (x+ 1 )^10
11
=(x+ 1 )^11 −(x+ 1 )^10
=(x+1)^10 (x+ 1 −1)
=(x+1)^10 xorx(x+1)^10.
Example 2
Evaluate
∫
x
√
x− 2 dx.
Step 1: Letu=x−2; thenx=u+ 2.
Step 2: Differentiate:du=dx.
Step 3: Rewrite:
∫
(u+ 2 )
√
udu=
∫
(u+ 2 )u^1 /^2 du=
∫ (
u^3 /^2 + 2 u^1 /^2
)
du.
Step 4: Integrate:
u^5 /^2
5 / 2
+
2 u^3 /^2
3 / 2
+C.
Step 5: Replace:
2 (x− 2 )^5 /^2
5
+
4 (x− 2 )^3 /^2
3
+C.
Step 6: Differentiate and Check:
(
5
2
)
2 (x− 2 )^3 /^2
5
+
(
3
2
)
4 (x− 2 )^1 /^2
3
=(x−2)^3 /^2 +2(x−2)^1 /^2
=(x−2)^1 /^2 [(x−2)+2]
=(x− 2 )^1 /^2 xorx
√
x−2.
Example 3
Evaluate
∫
(2x−5)^2 /^3 dx.
Step 1: Letu= 2 x−5.
Step 2: Differentiate:du= 2 dx⇒
du
2
=dx.