MA 3972-MA-Book April 11, 2018 15:57
248 STEP 4. Review the Knowledge You Need to Score High
12.1 Riemann Sums and Definite Integrals
Main Concepts:Sigma Notation, Definition of a Riemann Sum, Definition of
a Definite Integral, and Properties of Definite Integrals
Sigma Notation or Summation Notation
∑n
i= 1
a 1 +a 2 +a 3 +···+an
whereiis the index of summation,lis the lower limit, andnis the upper limit of summation.
(Note: The lower limit may be any non-negative integer≤n.)
Examples
∑^7
i= 5
i^2 = 52 + 62 + 72
∑^3
k= 0
2 k=2(0)+2(1)+2(2)+2(3)
∑^3
i=− 1
(2i+1)=− 1 + 1 + 3 + 5 + 7
∑^4
k= 1
(−1)k(k)=− 1 + 2 − 3 + 4
Summation Formulas
Ifnis a positive integer, then:
1.
∑n
i= 1
a=an
2.
∑n
i= 1
i=
n(n+1)
2
3.
∑n
i= 1
i^2 =
n(n+1)(2n+1)
6
4.
∑n
i= 1
i^3 =
n^2 (n+1)^2
4
5.
∑n
i= 1
i^4 =
n(n+1)(6n^3 + 9 n^2 +n−1)
30