MA 3972-MA-Book April 11, 2018 15:57
250 STEP 4. Review the Knowledge You Need to Score High
2
c 1 c 2
x 1
x 0 = 0
y
x 2 x 3
x
c 3
4681012
Figure 12.1-1
Riemann sum=
∑^3
i= 1
f(ci)Δxi=f(c 1 )Δx 1 + f(c 2 )Δx 2 +f(c 3 )Δx 3
=7(4)+39(4)+103(4)= 596
The Riemann sum is 596.
Example 2
Find the Riemann sum for f(x)=x^3 +1 over the interval [0, 4] using 4 subdivisions of
equal length and the midpoints of the intervals asci. (See Figure 12.1-2.)
0.5 1 1.5 2 2.5 3 3.5 4
c 1 c 2
x 1
x 0 = 0
y
x 2 x 3 x 4
x
c 3 c 4
Figure 12.1-2
Length of an intervalΔxi=
b−a
n
=
4 − 0
4
=1;ci= 0. 5 +(i−1)=i− 0 .5.
Riemann sum=
∑^4
i= 1
f(ci)Δxi=
∑^4
i= 1
[
(i− 0 .5)^3 + 1
]
1
=
∑^4
i= 1
(i− 0 .5)^3 +1.
Enter
∑(
(1− 0 .5)^3 +1,i,1,4
)
= 66.
The Riemann sum is 66.
Definition of a Definite Integral
Letf be defined on [a,b] with the Riemann sum forfover [a,b] written as
∑n
i= 1
f(ci)Δxi.
If max Δxi is the length of the largest subinterval in the partition and the
lim
maxΔxi→ 0
∑n
i= 1
f(ci)Δxiexists, then the limit is denoted by:
lim
maxΔxi→ 0
∑n
i= 1
f(ci)Δxi=
∫b
a
f(x)dx.
∫b
a
f(x)dxis the definite integral of ffromatob.