MA 3972-MA-Book April 11, 2018 15:57
Def inite Integrals 251
Example 1
Use a midpoint Riemann sum with three subdivisions of equal length to find the approxi-
mate value of
∫ 6
0 x
(^2) dx.
Δx=
6 − 0
3
=2, f(x)=x^2
midpoints arex=1, 3, and 5.
∫ 6
0
x^2 dx≈ f(1)Δx+f(3)Δx+f(5)Δx=1(2)+9(2)+25(2)
≈ 70
Example 2
Using the limit of the Riemann sum, find
∫ 5
13 xdx.
Usingnsubintervals of equal lengths, the length of an interval
Δxi=
5 − 1
n
=
4
n
;xi= 1 +
(
4
n
)
i
∫ 5
1
3 xdx= lim
maxΔxi→ 0
∑n
i= 1
f(ci)Δxi.
Letci=xi; maxΔxi→ 0 ⇒n→∞.
∫ 5
1
3 xdx=lim
n→∞
∑n
i= 1
f
(
1 +
4 i
n
)(
4
n
)
=lim
n→∞
∑n
i= 1
3
(
1 +
4 i
n
)(
4
n
)
=lim
n→∞
12
n
∑n
i= 1
(
1 +
4 i
n
)
=lim
n→∞
12
n
(
n+
4
n
[
n
(
n+ 1
2
)])
=lim
n→∞
12
n
(n+ 2 (n+ 1 ))=lim
n→∞
12
n
( 3 n+ 2 )=lim
n→∞
(
36 +
24
n
)
= 36
Thus,
∫ 5
1
3 xdx=36.
(Note: This question has not appeared in an AP Calculus AB exam in recent years.)
Properties of Definite Integrals
- Iffis defined on [a,b], and the limit lim
maxΔxi→ 0
∑n
i= 1
f(xi)Δxiexists, thenfis integrable
on [a,b].
- Iff is continuous on [a,b], then fis integrable on [a,b].