MA 3972-MA-Book April 11, 2018 15:57
256 STEP 4. Review the Knowledge You Need to Score High
Letu=x^2 ; then
du
dx
= 2 x.
Rewrite:y=−
∫u
1
sintdt.
dy
dx
=
dy
du
·
du
dx
=(−sinu)2x=(−sinx^2 )2x
=− 2 xsin(x^2 )
Example 5
Find
dy
dx
;ify=
∫x 2
x
√
et+ 1 dt.
y=
∫ 0
x
√
et+ 1 dt+
∫x 2
0
√
et+ 1 dt=−
∫x
0
√
et+ 1 dt+
∫x 2
0
√
et+ 1 dt
=
∫x 2
0
√
et+ 1 dt −
∫x
0
√
et+ 1 dt
Sincey=
∫ x 2
0
√
et+ 1 dt−
∫ x
0
√
et+ 1 dt
dy
dx
=
(
d
dx
∫x 2
0
√
et+ 1 dt
)
−
(
d
dx
∫x
0
√
et+ 1 dt
)
=
(√
ex^2 + 1
)
d
dx
(x^2 )−
(√
ex+ 1
)
= 2 x
√
ex^2 + 1 −
√
ex+ 1.
Example 6
F(x)=
∫x
1
(t^2 −4)dt, integrate to findF(x) and then differentiate to findf′(x).
F(x)=
t^3
3
− 4 t
]x
1 =
(
x^3
3
− 4 x
)
−
(
13
3
−4(1)
)
=
x^3
3
− 4 x+
11
3
F′(x)= 3
(
x^2
3
)
− 4 =x^2 − 4