MA 3972-MA-Book April 11, 2018 15:57
Def inite Integrals 257
12.3 Evaluating Definite Integrals
Main Concepts:Definite Integrals Involving Algebraic Functions;
Definite Integrals Involving Absolute Value; Definite
Integrals Involving Trigonometric, Logarithmic, and
Exponential Functions; Definite Integrals Involving
Odd and Even Functions
TIP • If the problem asks you to determine the concavity off′(notf), you need to know
iff′′is increasing or decreasing, or iff′′′is positive or negative.
Definite Integrals Involving Algebraic Functions
Example 1
Evaluate
∫ 4
1
x^3 − 8
√
x
dx.
Rewrite:
∫ 4
1
x^3 − 8
√
x
dx=
∫ 4
1
(
x^5 /^2 − 8 x−^1 /^2
)
dx
=
x^7 /^2
7 / 2
−
8 x^1 /^2
1 / 2
] 4
1
=
2 x^7 /^2
7
− 16 x^1 /^2
] 4
1
=
(
2(4)^7 /^2
7
−16(4)^1 /^2
)
−
(
2(1)^7 /^2
7
−16(1)^1 /^2
)
=
142
7
.
Verify your result with a calculator.
Example 2
Evaluate
∫ 2
0
x(x^2 −1)^7 dx.
Begin by evaluating the indefinite integral
∫
x(x^2 −1)^7 dx.
Letu=x^2 −1;du= 2 xdxor
du
2
=xdx.
Rewrite:
∫
u^7 du
2
=
1
2
∫
u^7 du=
1
2
(
u^8
8
)
+C=
u^8
16
+C=
(x^2 −1)^8
16
+C.
Thus, the definite integral
∫ 2
0
x(x^2 −1)^7 dx=
(x^2 −1)^8
16
] 2
0
=
(2^2 −1)^8
16
−
(0^2 −1)^8
16
=
38
16
−
(−1)^8
16
=
38 − 1
16
=410.
Verify your result with a calculator.