MA 3972-MA-Book April 11, 2018 15:57
258 STEP 4. Review the Knowledge You Need to Score High
Example 3
Evaluate
∫− 1
− 8
(
√ (^3) y+ 1
√ (^3) y
)
dy.
Rewrite:
∫− 1
− 8
(
y^1 /^3 +
1
y^1 /^3
)
dy=
∫− 1
− 8
(
y^1 /^3 +y−^1 /^3
)
dy
=
y^4 /^3
4 / 3
+
y^2 /^3
2 / 3
]− 1
− 8
=
3 y^4 /^3
4
+
3 y^2 /^3
2
]− 1
− 8
=
(
3(−1)^4 /^3
4
+
3(−1)^2 /^3
2
)
−
(
3(−8)^4 /^3
4
+
3(−8)^2 /^3
2
)
=
(
3
4
+
3
2
)
−(12+6)=
− 63
4
.
Verify your result with a calculator.
TIP • You may bring up to 2 (but no more than 2) approved graphing calculators to the
exam.
Definite Integrals Involving Absolute Value
Example 1
Evaluate
∫ 4
1
∣∣
3 x− 6
∣∣
dx.
Set 3x− 6 =0;x=2; thus,
∣∣
3 x− 6
∣∣
=
{
3 x−6ifx≥ 2
−(3x−6) ifx< 2
.
Rewrite:
∫ 4
1
∣∣
3 x− 6
∣∣
dx=
∫ 2
1
−(3x−6)dx+
∫ 4
2
(3x−6)dx
=
[
− 3 x^2
2
+ 6 x
] 2
1
+
[
3 x^2
2
− 6 x
] 4
2
=
(
−3(2)^2
2
−6(2)
)
−
(
−3(1)^2
2
−6(1)
)
+
(
3(4)^2
2
−6(4)
)
−
(
3(2)^2
2
−6(2)
)
=(− 6 +12)−
(
−
3
2
+ 6
)
+(24−24)−(6−12)
= 6 − 4
1
2
+ 0 + 6 =
15
2
.
Verify your result with a calculator.