MA 3972-MA-Book April 11, 2018 15:57
Def inite Integrals 259
Example 2
Evaluate
∫ 4
0
∣∣
x^2 − 4
∣∣
dx.
Setx^2 − 4 =0;x=±2.
Thus,
∣∣
x^2 − 4
∣∣
=
{
x^2 −4ifx≥2orx≤− 2
−(x^2 −4) if− 2 <x< 2
.
Thus,
∫ 4
0
∣∣
x^2 − 4
∣∣
dx=
∫ 2
0
−(x^2 −4)dx+
∫ 4
2
(x^2 −4)dx
=
[
−x^3
3
+ 4 x
] 2
0
+
[
x^3
3
− 4 x
] 4
2
=
(
− 23
3
+4(2)
)
−(0)+
(
43
3
−4(4)
)
−
(
23
3
−4(2)
)
=
(
− 8
3
+ 8
)
+
(
64
3
− 16
)
−
(
8
3
− 8
)
= 16.
Verify your result with a calculator.
TIP • You are not required to clear the memories in your calculator for the exam.
Definite Integrals Involving Trigonometric, Logarithmic,
and Exponential Functions
Example 1
Evaluate
∫π
0
(x+sinx)dx.
Rewrite:
∫π
0
(x+sinx)dx=
x^2
2
−cosx
]π
0
=
(
π^2
2
−cosπ
)
−( 0 −cos 0)
=
π^2
2
+ 1 + 1 =
π^2
2
+ 2.
Verify your result with a calculator.
Example 2
Evaluate
∫π/ 2
π/ 4
csc^2 ( 3 t)dt.
Letu= 3 t;du= 3 dtor
du
3
=dt.