MA 3972-MA-Book April 11, 2018 15:57
268 STEP 4. Review the Knowledge You Need to Score High
12.8 Solutions to Cumulative Review Problems
- Asx→−∞, x=−
√
x^2.
lim
x→−∞
√
x^2 − 4
3 x− 9
=lim
x→−∞
√
x^2 − 4 /−
√
x^2
(3x−9)/x
=lim
x→−∞
−
√
(x^2 −4)/x^2
3 −(9/x)
=lim
x→−∞
−
√
1 −(4/x)^2
3 − 9 /x
=
−
√
1 − 0
3 − 0
=−
1
3
- y=ln
∣∣
x^2 − 4
∣∣
,
dy
dx
=
1
(x^2 −4)
(2x)
dy
dx
∣
∣∣
∣x= 3 =
2(3)
(3^2 −4)
=
6
5
- (a) (See Figure 12.8-1.)
x
f′
f decr. incr. decr. incr. decr.
- 68 –^5 –^137
rel.
min.
rel.
max.
rel.
min.
rel.
max.
- – + –
Figure 12.8-1
The function fhas a relative
minimum atx=−5 andx=3, andf
has a relative maximum atx=−1 and
x=7.
(b) (See Figure 12.8-2.)
x
f′
f′′
f
incr.
- 6
- – + –
concave
downward
- – + –
concave
upward
concave
downward
– (^3158)
decr. incr. decr.
concave
upward
Figure 12.8-2
The functionfis concave upward on
intervals (−6,−3) and (1, 5).
(c) A change of concavity occurs at
x=−3,x=1, andx=5.
- (Calculator) Differentiate both sides of
9 x^2 + 4 y^2 − 18 x+ 16 y=11.
18 x+ 8 y
dy
dx
− 18 + 16
dy
dx
= 0
8 y
dy
dx
+ 16
dy
dx
=− 18 x+ 18
dy
dx
(8y+16)=− 18 x+ 18
dy
dx
=
− 18 x+ 18
8 y+ 16
Horizontal tangent⇒
dy
dx
=0.
Set
dy
dx
= 0 ⇒− 18 x+ 18 =0orx= 1.
Atx=1, 9+ 4 y^2 − 18 + 16 y= 11
⇒ 4 y^2 + 16 y− 20 = 0.
Using a calculator, enter [Solve]
(4y∧ 2 + 16 y− 20 =0,y); obtainingy=− 5
ory=1.
Thus, at each of the points at (1, 1) and
(1,−5), the graph has a horizontal tangent.
Vertical tangent⇒
dy
dx
is undefined.
Set 8y+ 16 = 0 ⇒y=−2.
Aty=−2, 9x^2 + 16 − 18 x− 32 = 11
⇒ 9 x^2 − 18 x− 27 = 0.
Enter [Solve](9x^2 − 18 x− 27 =0,x) and
obtainx=3orx=−1.
Thus, at each of the points (3,−2) and
(−1,−2), the graph has a vertical tangent.
(See Figure 12.8-3.)