5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 15:57

268 STEP 4. Review the Knowledge You Need to Score High


12.8 Solutions to Cumulative Review Problems



  1. Asx→−∞, x=−



x^2.

lim
x→−∞


x^2 − 4
3 x− 9
=lim
x→−∞


x^2 − 4 /−


x^2
(3x−9)/x

=lim
x→−∞



(x^2 −4)/x^2
3 −(9/x)

=lim
x→−∞



1 −(4/x)^2
3 − 9 /x

=




1 − 0
3 − 0

=−


1


3



  1. y=ln


∣∣
x^2 − 4

∣∣
,
dy
dx

=


1


(x^2 −4)
(2x)

dy
dx


∣∣
∣x= 3 =

2(3)


(3^2 −4)


=


6


5



  1. (a) (See Figure 12.8-1.)


x

f′

f decr. incr. decr. incr. decr.


  • 68 –^5 –^137


rel.
min.

rel.
max.

rel.
min.

rel.
max.




    • – + –




Figure 12.8-1
The function fhas a relative
minimum atx=−5 andx=3, andf
has a relative maximum atx=−1 and
x=7.
(b) (See Figure 12.8-2.)

x

f′

f′′
f

incr.


  • 6

    • – + –
      concave
      downward




concave
upward

concave
downward

– (^3158)
decr. incr. decr.
concave
upward
Figure 12.8-2
The functionfis concave upward on
intervals (−6,−3) and (1, 5).
(c) A change of concavity occurs at
x=−3,x=1, andx=5.



  1. (Calculator) Differentiate both sides of
    9 x^2 + 4 y^2 − 18 x+ 16 y=11.


18 x+ 8 y
dy
dx

− 18 + 16


dy
dx

= 0


8 y
dy
dx

+ 16


dy
dx
=− 18 x+ 18

dy
dx
(8y+16)=− 18 x+ 18

dy
dx

=


− 18 x+ 18
8 y+ 16

Horizontal tangent⇒
dy
dx

=0.


Set
dy
dx
= 0 ⇒− 18 x+ 18 =0orx= 1.

Atx=1, 9+ 4 y^2 − 18 + 16 y= 11
⇒ 4 y^2 + 16 y− 20 = 0.
Using a calculator, enter [Solve]
(4y∧ 2 + 16 y− 20 =0,y); obtainingy=− 5
ory=1.
Thus, at each of the points at (1, 1) and
(1,−5), the graph has a horizontal tangent.
Vertical tangent⇒
dy
dx
is undefined.
Set 8y+ 16 = 0 ⇒y=−2.
Aty=−2, 9x^2 + 16 − 18 x− 32 = 11
⇒ 9 x^2 − 18 x− 27 = 0.
Enter [Solve](9x^2 − 18 x− 27 =0,x) and
obtainx=3orx=−1.
Thus, at each of the points (3,−2) and
(−1,−2), the graph has a vertical tangent.
(See Figure 12.8-3.)
Free download pdf